296 research outputs found

    k-tuple colorings of the Cartesian product of graphs

    Get PDF
    A k-tuple coloring of a graph G assigns a set of k colors to each vertex of G such that if two vertices are adjacent, the corresponding sets of colors are disjoint. The k-tuple chromatic number of G, χk(G), is the smallest t so that there is a k-tuple coloring of G using t colors. It is well known that χ(G□H)=max{χ(G),χ(H)}. In this paper, we show that there exist graphs G and H such that χk(G□H)>max{χk(G),χk(H)} for k≥2. Moreover, we also show that there exist graph families such that, for any k≥1, the k-tuple chromatic number of their Cartesian product is equal to the maximum k-tuple chromatic number of its factors.Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Koch, Ivo Valerio. Universidad Nacional de General Sarmiento. Instituto de Industria; ArgentinaFil: Torres, Pablo. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaFil: Valencia Pabon, Mario. Universite de Paris 13-Nord; Francia. Centre National de la Recherche Scientifique; Franci

    List Distinguishing Parameters of Trees

    Full text link
    A coloring of the vertices of a graph G is said to be distinguishing} provided no nontrivial automorphism of G preserves all of the vertex colors. The distinguishing number of G, D(G), is the minimum number of colors in a distinguishing coloring of G. The distinguishing chromatic number of G, chi_D(G), is the minimum number of colors in a distinguishing coloring of G that is also a proper coloring. Recently the notion of a distinguishing coloring was extended to that of a list distinguishing coloring. Given an assignment L= {L(v) : v in V(G)} of lists of available colors to the vertices of G, we say that G is (properly) L-distinguishable if there is a (proper) distinguishing coloring f of G such that f(v) is in L(v) for all v. The list distinguishing number of G, D_l(G), is the minimum integer k such that G is L-distinguishable for any list assignment L with |L(v)| = k for all v. Similarly, the list distinguishing chromatic number of G, denoted chi_{D_l}(G) is the minimum integer k such that G is properly L-distinguishable for any list assignment L with |L(v)| = k for all v. In this paper, we study these distinguishing parameters for trees, and in particular extend an enumerative technique of Cheng to show that for any tree T, D_l(T) = D(T), chi_D(T)=chi_{D_l}(T), and chi_D(T) <= D(T) + 1.Comment: 10 page

    Tverberg's theorem and graph coloring

    Full text link
    The topological Tverberg theorem has been generalized in several directions by setting extra restrictions on the Tverberg partitions. Restricted Tverberg partitions, defined by the idea that certain points cannot be in the same part, are encoded with graphs. When two points are adjacent in the graph, they are not in the same part. If the restrictions are too harsh, then the topological Tverberg theorem fails. The colored Tverberg theorem corresponds to graphs constructed as disjoint unions of small complete graphs. Hell studied the case of paths and cycles. In graph theory these partitions are usually viewed as graph colorings. As explored by Aharoni, Haxell, Meshulam and others there are fundamental connections between several notions of graph colorings and topological combinatorics. For ordinary graph colorings it is enough to require that the number of colors q satisfy q>Delta, where Delta is the maximal degree of the graph. It was proven by the first author using equivariant topology that if q>\Delta^2 then the topological Tverberg theorem still works. It is conjectured that q>K\Delta is also enough for some constant K, and in this paper we prove a fixed-parameter version of that conjecture. The required topological connectivity results are proven with shellability, which also strengthens some previous partial results where the topological connectivity was proven with the nerve lemma.Comment: To appear in Discrete and Computational Geometry, 13 pages, 1 figure. Updated languag

    Coherence for indexed symmetric monoidal categories

    Full text link
    Indexed symmetric monoidal categories are an important refinement of bicategories -- this structure underlies several familiar bicategories, including the homotopy bicategory of parametrized spectra, and its equivariant and fiberwise generalizations. In this paper, we extend existing coherence theorems to the setting of indexed symmetric monoidal categories. The most central theorem states that a large family of operations on a bicategory defined from an indexed symmetric monoidal category are all canonically isomorphic. As a part of this theorem, we introduce a rigorous graphical calculus that specifies when two such operations admit a canonical isomorphism.Comment: 100 pages, 64 figures, 13 table
    • …
    corecore