155,663 research outputs found

    Ramsey-nice families of graphs

    Get PDF
    For a finite family F\mathcal{F} of fixed graphs let Rk(F)R_k(\mathcal{F}) be the smallest integer nn for which every kk-coloring of the edges of the complete graph KnK_n yields a monochromatic copy of some FFF\in\mathcal{F}. We say that F\mathcal{F} is kk-nice if for every graph GG with χ(G)=Rk(F)\chi(G)=R_k(\mathcal{F}) and for every kk-coloring of E(G)E(G) there exists a monochromatic copy of some FFF\in\mathcal{F}. It is easy to see that if F\mathcal{F} contains no forest, then it is not kk-nice for any kk. It seems plausible to conjecture that a (weak) converse holds, namely, for any finite family of graphs F\mathcal{F} that contains at least one forest, and for all kk0(F)k\geq k_0(\mathcal{F}) (or at least for infinitely many values of kk), F\mathcal{F} is kk-nice. We prove several (modest) results in support of this conjecture, showing, in particular, that it holds for each of the three families consisting of two connected graphs with 3 edges each and observing that it holds for any family F\mathcal{F} containing a forest with at most 2 edges. We also study some related problems and disprove a conjecture by Aharoni, Charbit and Howard regarding the size of matchings in regular 3-partite 3-uniform hypergraphs.Comment: 20 pages, 2 figure

    Statistical Mechanics of maximal independent sets

    Full text link
    The graph theoretic concept of maximal independent set arises in several practical problems in computer science as well as in game theory. A maximal independent set is defined by the set of occupied nodes that satisfy some packing and covering constraints. It is known that finding minimum and maximum-density maximal independent sets are hard optimization problems. In this paper, we use cavity method of statistical physics and Monte Carlo simulations to study the corresponding constraint satisfaction problem on random graphs. We obtain the entropy of maximal independent sets within the replica symmetric and one-step replica symmetry breaking frameworks, shedding light on the metric structure of the landscape of solutions and suggesting a class of possible algorithms. This is of particular relevance for the application to the study of strategic interactions in social and economic networks, where maximal independent sets correspond to pure Nash equilibria of a graphical game of public goods allocation

    Optimal covers with Hamilton cycles in random graphs

    Full text link
    A packing of a graph G with Hamilton cycles is a set of edge-disjoint Hamilton cycles in G. Such packings have been studied intensively and recent results imply that a largest packing of Hamilton cycles in G_n,p a.a.s. has size \lfloor delta(G_n,p) /2 \rfloor. Glebov, Krivelevich and Szab\'o recently initiated research on the `dual' problem, where one asks for a set of Hamilton cycles covering all edges of G. Our main result states that for log^{117}n / n < p < 1-n^{-1/8}, a.a.s. the edges of G_n,p can be covered by \lceil Delta(G_n,p)/2 \rceil Hamilton cycles. This is clearly optimal and improves an approximate result of Glebov, Krivelevich and Szab\'o, which holds for p > n^{-1+\eps}. Our proof is based on a result of Knox, K\"uhn and Osthus on packing Hamilton cycles in pseudorandom graphs.Comment: final version of paper (to appear in Combinatorica

    Edge-Stable Equimatchable Graphs

    Full text link
    A graph GG is \emph{equimatchable} if every maximal matching of GG has the same cardinality. We are interested in equimatchable graphs such that the removal of any edge from the graph preserves the equimatchability. We call an equimatchable graph GG \emph{edge-stable} if GeG\setminus {e}, that is the graph obtained by the removal of edge ee from GG, is also equimatchable for any eE(G)e \in E(G). After noticing that edge-stable equimatchable graphs are either 2-connected factor-critical or bipartite, we characterize edge-stable equimatchable graphs. This characterization yields an O(min(n3.376,n1.5m))O(\min(n^{3.376}, n^{1.5}m)) time recognition algorithm. Lastly, we introduce and shortly discuss the related notions of edge-critical, vertex-stable and vertex-critical equimatchable graphs. In particular, we emphasize the links between our work and the well-studied notion of shedding vertices, and point out some open questions

    Edge-disjoint Hamilton cycles in graphs

    Get PDF
    In this paper we give an approximate answer to a question of Nash-Williams from 1970: we show that for every \alpha > 0, every sufficiently large graph on n vertices with minimum degree at least (1/2 + \alpha)n contains at least n/8 edge-disjoint Hamilton cycles. More generally, we give an asymptotically best possible answer for the number of edge-disjoint Hamilton cycles that a graph G with minimum degree \delta must have. We also prove an approximate version of another long-standing conjecture of Nash-Williams: we show that for every \alpha > 0, every (almost) regular and sufficiently large graph on n vertices with minimum degree at least (1/2+α)n(1/2 + \alpha)n can be almost decomposed into edge-disjoint Hamilton cycles.Comment: Minor Revisio

    An exploration of two infinite families of snarks

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2019In this paper, we generalize a single example of a snark that admits a drawing with even rotational symmetry into two infinite families using a voltage graph construction techniques derived from cyclic Pseudo-Loupekine snarks. We expose an enforced chirality in coloring the underlying 5-pole that generated the known example, and use this fact to show that the infinite families are in fact snarks. We explore the construction of these families in terms of the blowup construction. We show that a graph in either family with rotational symmetry of order m has automorphism group of order m2m⁺¹. The oddness of graphs in both families is determined exactly, and shown to increase linearly with the order of rotational symmetry.Chapter 1: Introduction -- 1.1 General Graph Theory -- Chapter 2: Introduction to Snarks -- 2.1 History -- 2.2 Motivation -- 2.3 Loupekine Snarks and k-poles -- 2.4 Conditions on Triviality -- Chapter 3: The Construction of Two Families of Snarks -- 3.1 Voltage Graphs and Lifts -- 3.2 The Family of Snarks, Fm -- 3.3 A Second Family of Snarks, Rm -- Chapter 4: Results -- 4.1 Proof that the graphs Fm and Rm are Snarks -- 4.2 Interpreting Fm and Rm as Blowup Graphs -- 4.3 Automorphism Group -- 4.4 Oddness -- Chapter 5: Conclusions and Open Questions -- References
    corecore