45,454 research outputs found

    Finding Densest kk-Connected Subgraphs

    Get PDF
    Dense subgraph discovery is an important graph-mining primitive with a variety of real-world applications. One of the most well-studied optimization problems for dense subgraph discovery is the densest subgraph problem, where given an edge-weighted undirected graph G=(V,E,w)G=(V,E,w), we are asked to find SVS\subseteq V that maximizes the density d(S)d(S), i.e., half the weighted average degree of the induced subgraph G[S]G[S]. This problem can be solved exactly in polynomial time and well-approximately in almost linear time. However, a densest subgraph has a structural drawback, namely, the subgraph may not be robust to vertex/edge failure. Indeed, a densest subgraph may not be well-connected, which implies that the subgraph may be disconnected by removing only a few vertices/edges within it. In this paper, we provide an algorithmic framework to find a dense subgraph that is well-connected in terms of vertex/edge connectivity. Specifically, we introduce the following problems: given a graph G=(V,E,w)G=(V,E,w) and a positive integer/real kk, we are asked to find SVS\subseteq V that maximizes the density d(S)d(S) under the constraint that G[S]G[S] is kk-vertex/edge-connected. For both problems, we propose polynomial-time (bicriteria and ordinary) approximation algorithms, using classic Mader's theorem in graph theory and its extensions

    Some hard families of parameterised counting problems

    Get PDF
    We consider parameterised subgraph-counting problems of the following form: given a graph G, how many k-tuples of its vertices have a given property? A number of such problems are known to be #W[1]-complete; here we substantially generalise some of these existing results by proving hardness for two large families of such problems. We demonstrate that it is #W[1]-hard to count the number of k-vertex subgraphs having any property where the number of distinct edge-densities of labelled subgraphs that satisfy the property is o(k^2). In the special case that the property in question depends only on the number of edges in the subgraph, we give a strengthening of this result which leads to our second family of hard problems.Comment: A few more minor changes. This version to appear in the ACM Transactions on Computation Theor

    Approximating minimum power covers of intersecting families and directed edge-connectivity problems

    Get PDF
    AbstractGiven a (directed) graph with costs on the edges, the power of a node is the maximum cost of an edge leaving it, and the power of the graph is the sum of the powers of its nodes. Let G=(V,E) be a graph with edge costs {c(e):e∈E} and let k be an integer. We consider problems that seek to find a min-power spanning subgraph G of G that satisfies a prescribed edge-connectivity property. In the Min-Powerk-Edge-Outconnected Subgraph problem we are given a root r∈V, and require that G contains k pairwise edge-disjoint rv-paths for all v∈V−r. In the Min-Powerk-Edge-Connected Subgraph problem G is required to be k-edge-connected. For k=1, these problems are at least as hard as the Set-Cover problem and thus have an Ω(ln|V|) approximation threshold. For k=Ω(nε), they are unlikely to admit a polylogarithmic approximation ratio [15]. We give approximation algorithms with ratio O(kln|V|). Our algorithms are based on a more general O(ln|V|)-approximation algorithm for the problem of finding a min-power directed edge-cover of an intersecting set-family; a set-family F is intersecting if X∩Y,X∪Y∈F for any intersecting X,Y∈F, and an edge set I covers F if for every X∈F there is an edge in I entering X

    Parameterized Algorithms for Graph Partitioning Problems

    Full text link
    We study a broad class of graph partitioning problems, where each problem is specified by a graph G=(V,E)G=(V,E), and parameters kk and pp. We seek a subset UVU\subseteq V of size kk, such that α1m1+α2m2\alpha_1m_1 + \alpha_2m_2 is at most (or at least) pp, where α1,α2R\alpha_1,\alpha_2\in\mathbb{R} are constants defining the problem, and m1,m2m_1, m_2 are the cardinalities of the edge sets having both endpoints, and exactly one endpoint, in UU, respectively. This class of fixed cardinality graph partitioning problems (FGPP) encompasses Max (k,nk)(k,n-k)-Cut, Min kk-Vertex Cover, kk-Densest Subgraph, and kk-Sparsest Subgraph. Our main result is an O(4k+o(k)Δk)O^*(4^{k+o(k)}\Delta^k) algorithm for any problem in this class, where Δ1\Delta \geq 1 is the maximum degree in the input graph. This resolves an open question posed by Bonnet et al. [IPEC 2013]. We obtain faster algorithms for certain subclasses of FGPPs, parameterized by pp, or by (k+p)(k+p). In particular, we give an O(4p+o(p))O^*(4^{p+o(p)}) time algorithm for Max (k,nk)(k,n-k)-Cut, thus improving significantly the best known O(pp)O^*(p^p) time algorithm

    Approximating minimum cost connectivity problems

    Get PDF
    We survey approximation algorithms of connectivity problems. The survey presented describing various techniques. In the talk the following techniques and results are presented. 1)Outconnectivity: Its well known that there exists a polynomial time algorithm to solve the problems of finding an edge k-outconnected from r subgraph [EDMONDS] and a vertex k-outconnectivity subgraph from r [Frank-Tardos] . We show how to use this to obtain a ratio 2 approximation for the min cost edge k-connectivity problem. 2)The critical cycle theorem of Mader: We state a fundamental theorem of Mader and use it to provide a 1+(k-1)/n ratio approximation for the min cost vertex k-connected subgraph, in the metric case. We also show results for the min power vertex k-connected problem using this lemma. We show that the min power is equivalent to the min-cost case with respect to approximation. 3)Laminarity and uncrossing: We use the well known laminarity of a BFS solution and show a simple new proof due to Ravi et al for Jain\u27s 2 approximation for Steiner network

    Inapproximability of Maximum Biclique Problems, Minimum kk-Cut and Densest At-Least-kk-Subgraph from the Small Set Expansion Hypothesis

    Full text link
    The Small Set Expansion Hypothesis (SSEH) is a conjecture which roughly states that it is NP-hard to distinguish between a graph with a small subset of vertices whose edge expansion is almost zero and one in which all small subsets of vertices have expansion almost one. In this work, we prove inapproximability results for the following graph problems based on this hypothesis: - Maximum Edge Biclique (MEB): given a bipartite graph GG, find a complete bipartite subgraph of GG with maximum number of edges. - Maximum Balanced Biclique (MBB): given a bipartite graph GG, find a balanced complete bipartite subgraph of GG with maximum number of vertices. - Minimum kk-Cut: given a weighted graph GG, find a set of edges with minimum total weight whose removal partitions GG into kk connected components. - Densest At-Least-kk-Subgraph (DALkkS): given a weighted graph GG, find a set SS of at least kk vertices such that the induced subgraph on SS has maximum density (the ratio between the total weight of edges and the number of vertices). We show that, assuming SSEH and NP \nsubseteq BPP, no polynomial time algorithm gives n1εn^{1 - \varepsilon}-approximation for MEB or MBB for every constant ε>0\varepsilon > 0. Moreover, assuming SSEH, we show that it is NP-hard to approximate Minimum kk-Cut and DALkkS to within (2ε)(2 - \varepsilon) factor of the optimum for every constant ε>0\varepsilon > 0. The ratios in our results are essentially tight since trivial algorithms give nn-approximation to both MEB and MBB and efficient 22-approximation algorithms are known for Minimum kk-Cut [SV95] and DALkkS [And07, KS09]. Our first result is proved by combining a technique developed by Raghavendra et al. [RST12] to avoid locality of gadget reductions with a generalization of Bansal and Khot's long code test [BK09] whereas our second result is shown via elementary reductions.Comment: A preliminary version of this work will appear at ICALP 2017 under a different title "Inapproximability of Maximum Edge Biclique, Maximum Balanced Biclique and Minimum k-Cut from the Small Set Expansion Hypothesis

    Approximating minimum-power edge-multicovers

    Full text link
    Given a graph with edge costs, the {\em power} of a node is themaximum cost of an edge incident to it, and the power of a graph is the sum of the powers of its nodes. Motivated by applications in wireless networks, we consider the following fundamental problem in wireless network design. Given a graph G=(V,E)G=(V,E) with edge costs and degree bounds {r(v):vV}\{r(v):v \in V\}, the {\sf Minimum-Power Edge-Multi-Cover} ({\sf MPEMC}) problem is to find a minimum-power subgraph JJ of GG such that the degree of every node vv in JJ is at least r(v)r(v). We give two approximation algorithms for {\sf MPEMC}, with ratios O(logk)O(\log k) and k+1/2k+1/2, where k=maxvVr(v)k=\max_{v \in V} r(v) is the maximum degree bound. This improves the previous ratios O(logn)O(\log n) and k+1k+1, and implies ratios O(logk)O(\log k) for the {\sf Minimum-Power kk-Outconnected Subgraph} and O(logklognnk)O(\log k \log \frac{n}{n-k}) for the {\sf Minimum-Power kk-Connected Subgraph} problems; the latter is the currently best known ratio for the min-cost version of the problem
    corecore