23,609 research outputs found

    k-Selection Protocols from Energetic Complexity Perspective

    Get PDF
    International audienceIn this paper we discuss energetic complexity aspects of k-Selection protocols for the single-hop radio network (that is equivalent to Multiple Access Channel model). The aim is to grant each of k activated stations exclusive access to communication channel. We consider both deterministic as well as randomized algorithms. Our main goal is to investigate relations between minimal time of execution (time complexity) and energy consumption (energetic complexity). We present lower bound for energetic complexity for some classes of algorithms for k-Selection. We also present randomized algorithm efficient in terms of both time and energetic complexity

    Hierarchical coexistence of universality and diversity controls robustness and multi-functionality in intermediate filament protein networks

    Get PDF
    Proteins constitute the elementary building blocks of a vast variety of biological materials such as cellular protein networks, spider silk or bone, where they create extremely robust, multi-functional materials by self-organization of structures over many length- and time scales, from nano to macro. Some of the structural features are commonly found in a many different tissues, that is, they are highly conserved. Examples of such universal building blocks include alpha-helices, beta-sheets or tropocollagen molecules. In contrast, other features are highly specific to tissue types, such as particular filament assemblies, beta-sheet nanocrystals in spider silk or tendon fascicles. These examples illustrate that the coexistence of universality and diversity – in the following referred to as the universality-diversity paradigm (UDP) – is an overarching feature in protein materials. This paradigm is a paradox: How can a structure be universal and diverse at the same time? In protein materials, the coexistence of universality and diversity is enabled by utilizing hierarchies, which serve as an additional dimension beyond the 3D or 4D physical space. This may be crucial to understand how their structure and properties are linked, and how these materials are capable of combining seemingly disparate properties such as strength and robustness. Here we illustrate how the UDP enables to unify universal building blocks and highly diversified patterns through formation of hierarchical structures that lead to multi-functional, robust yet highly adapted structures. We illustrate these concepts in an analysis of three types of intermediate filament proteins, including vimentin, lamin and keratin

    Lectin ligands: New insights into their conformations and their dynamic behavior and the discovery of conformer selection by lectins

    Get PDF
    The mysteries of the functions of complex glycoconjugates have enthralled scientists over decades. Theoretical considerations have ascribed an enormous capacity to store information to oligosaccharides, In the interplay with lectins sugar-code words of complex carbohydrate structures can be deciphered. To capitalize on knowledge about this type of molecular recognition for rational marker/drug design, the intimate details of the recognition process must be delineated, To this aim the required approach is garnered from several fields, profiting from advances primarily in X-ray crystallography, nuclear magnetic resonance spectroscopy and computational calculations encompassing molecular mechanics, molecular dynamics and homology modeling. Collectively considered, the results force us to jettison the preconception of a rigid ligand structure. On the contrary, a carbohydrate ligand may move rather freely between two or even more low-energy positions, affording the basis for conformer selection by a lectin. By an exemplary illustration of the interdisciplinary approach including up-to-date refinements in carbohydrate modeling it is underscored why this combination is considered to show promise of fostering innovative strategies in rational marker/drug design

    Allo-network drugs: Extension of the allosteric drug concept to protein-protein interaction and signaling networks

    Get PDF
    Allosteric drugs are usually more specific and have fewer side effects than orthosteric drugs targeting the same protein. Here, we overview the current knowledge on allosteric signal transmission from the network point of view, and show that most intra-protein conformational changes may be dynamically transmitted across protein-protein interaction and signaling networks of the cell. Allo-network drugs influence the pharmacological target protein indirectly using specific inter-protein network pathways. We show that allo-network drugs may have a higher efficiency to change the networks of human cells than those of other organisms, and can be designed to have specific effects on cells in a diseased state. Finally, we summarize possible methods to identify allo-network drug targets and sites, which may develop to a promising new area of systems-based drug design

    Sampling of conformational ensemble for virtual screening using molecular dynamics simulations and normal mode analysis

    Get PDF
    Aim: Molecular dynamics simulations and normal mode analysis are well-established approaches to generate receptor conformational ensembles (RCEs) for ligand docking and virtual screening. Here, we report new fast molecular dynamics-based and normal mode analysis-based protocols combined with conformational pocket classifications to efficiently generate RCEs. Materials \& methods: We assessed our protocols on two well-characterized protein targets showing local active site flexibility, dihydrofolate reductase and large collective movements, CDK2. The performance of the RCEs was validated by distinguishing known ligands of dihydrofolate reductase and CDK2 among a dataset of diverse chemical decoys. Results \& discussion: Our results show that different simulation protocols can be efficient for generation of RCEs depending on different kind of protein flexibility

    Investigating biocomplexity through the agent-based paradigm.

    Get PDF
    Capturing the dynamism that pervades biological systems requires a computational approach that can accommodate both the continuous features of the system environment as well as the flexible and heterogeneous nature of component interactions. This presents a serious challenge for the more traditional mathematical approaches that assume component homogeneity to relate system observables using mathematical equations. While the homogeneity condition does not lead to loss of accuracy while simulating various continua, it fails to offer detailed solutions when applied to systems with dynamically interacting heterogeneous components. As the functionality and architecture of most biological systems is a product of multi-faceted individual interactions at the sub-system level, continuum models rarely offer much beyond qualitative similarity. Agent-based modelling is a class of algorithmic computational approaches that rely on interactions between Turing-complete finite-state machines--or agents--to simulate, from the bottom-up, macroscopic properties of a system. In recognizing the heterogeneity condition, they offer suitable ontologies to the system components being modelled, thereby succeeding where their continuum counterparts tend to struggle. Furthermore, being inherently hierarchical, they are quite amenable to coupling with other computational paradigms. The integration of any agent-based framework with continuum models is arguably the most elegant and precise way of representing biological systems. Although in its nascence, agent-based modelling has been utilized to model biological complexity across a broad range of biological scales (from cells to societies). In this article, we explore the reasons that make agent-based modelling the most precise approach to model biological systems that tend to be non-linear and complex
    corecore