27,596 research outputs found

    Beyond Outerplanarity

    Full text link
    We study straight-line drawings of graphs where the vertices are placed in convex position in the plane, i.e., convex drawings. We consider two families of graph classes with nice convex drawings: outer kk-planar graphs, where each edge is crossed by at most kk other edges; and, outer kk-quasi-planar graphs where no kk edges can mutually cross. We show that the outer kk-planar graphs are (4k+1+1)(\lfloor\sqrt{4k+1}\rfloor+1)-degenerate, and consequently that every outer kk-planar graph can be (4k+1+2)(\lfloor\sqrt{4k+1}\rfloor+2)-colored, and this bound is tight. We further show that every outer kk-planar graph has a balanced separator of size O(k)O(k). This implies that every outer kk-planar graph has treewidth O(k)O(k). For fixed kk, these small balanced separators allow us to obtain a simple quasi-polynomial time algorithm to test whether a given graph is outer kk-planar, i.e., none of these recognition problems are NP-complete unless ETH fails. For the outer kk-quasi-planar graphs we prove that, unlike other beyond-planar graph classes, every edge-maximal nn-vertex outer kk-quasi planar graph has the same number of edges, namely 2(k1)n(2k12)2(k-1)n - \binom{2k-1}{2}. We also construct planar 3-trees that are not outer 33-quasi-planar. Finally, we restrict outer kk-planar and outer kk-quasi-planar drawings to \emph{closed} drawings, where the vertex sequence on the boundary is a cycle in the graph. For each kk, we express closed outer kk-planarity and \emph{closed outer kk-quasi-planarity} in extended monadic second-order logic. Thus, closed outer kk-planarity is linear-time testable by Courcelle's Theorem.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    The number of edges in k-quasi-planar graphs

    Full text link
    A graph drawn in the plane is called k-quasi-planar if it does not contain k pairwise crossing edges. It has been conjectured for a long time that for every fixed k, the maximum number of edges of a k-quasi-planar graph with n vertices is O(n). The best known upper bound is n(\log n)^{O(\log k)}. In the present note, we improve this bound to (n\log n)2^{\alpha^{c_k}(n)} in the special case where the graph is drawn in such a way that every pair of edges meet at most once. Here \alpha(n) denotes the (extremely slowly growing) inverse of the Ackermann function. We also make further progress on the conjecture for k-quasi-planar graphs in which every edge is drawn as an x-monotone curve. Extending some ideas of Valtr, we prove that the maximum number of edges of such graphs is at most 2^{ck^6}n\log n.Comment: arXiv admin note: substantial text overlap with arXiv:1106.095

    Coloring curves that cross a fixed curve

    Get PDF
    We prove that for every integer t1t\geq 1, the class of intersection graphs of curves in the plane each of which crosses a fixed curve in at least one and at most tt points is χ\chi-bounded. This is essentially the strongest χ\chi-boundedness result one can get for this kind of graph classes. As a corollary, we prove that for any fixed integers k2k\geq 2 and t1t\geq 1, every kk-quasi-planar topological graph on nn vertices with any two edges crossing at most tt times has O(nlogn)O(n\log n) edges.Comment: Small corrections, improved presentatio

    Planar subgraphs without low-degree nodes

    Get PDF
    We study the following problem: given a geometric graph G and an integer k, determine if G has a planar spanning subgraph (with the original embedding and straight-line edges) such that all nodes have degree at least k. If G is a unit disk graph, the problem is trivial to solve for k = 1. We show that even the slightest deviation from the trivial case (e.g., quasi unit disk graphs or k = 1) leads to NP-hard problems.Peer reviewe

    Unimodular lattice triangulations as small-world and scale-free random graphs

    Full text link
    Real-world networks, e.g. the social relations or world-wide-web graphs, exhibit both small-world and scale-free behaviour. We interpret lattice triangulations as planar graphs by identifying triangulation vertices with graph nodes and one-dimensional simplices with edges. Since these triangulations are ergodic with respect to a certain Pachner flip, applying different Monte-Carlo simulations enables us to calculate average properties of random triangulations, as well as canonical ensemble averages using an energy functional that is approximately the variance of the degree distribution. All considered triangulations have clustering coefficients comparable with real world graphs, for the canonical ensemble there are inverse temperatures with small shortest path length independent of system size. Tuning the inverse temperature to a quasi-critical value leads to an indication of scale-free behaviour for degrees k5k \geq 5. Using triangulations as a random graph model can improve the understanding of real-world networks, especially if the actual distance of the embedded nodes becomes important.Comment: 17 pages, 6 figures, will appear in New J. Phy

    Coloring curves that cross a fixed curve

    Get PDF
    We prove that for every integer t\geqslant 1, the class of intersection graphs of curves in the plane each of which crosses a fixed curve in at least one and at most t points is χχ-bounded. This is essentially the strongest χχ-boundedness result one can get for those kind of graph classes. As a corollary, we prove that for any fixed integers kk\geqslant 2 and tt\geqslant 1, every k-quasi-planar topological graph on n vertices with any two edges crossing at most t times has O(nlogn)O(nlogn) edges
    corecore