627 research outputs found

    The Computational Power of Non-interacting Particles

    Full text link
    Shortened abstract: In this thesis, I study two restricted models of quantum computing related to free identical particles. Free fermions correspond to a set of two-qubit gates known as matchgates. Matchgates are classically simulable when acting on nearest neighbors on a path, but universal for quantum computing when acting on distant qubits or when SWAP gates are available. I generalize these results in two ways. First, I show that SWAP is only one in a large family of gates that uplift matchgates to quantum universality. In fact, I show that the set of all matchgates plus any nonmatchgate parity-preserving two-qubit gate is universal, and interpret this fact in terms of local invariants of two-qubit gates. Second, I investigate the power of matchgates in arbitrary connectivity graphs, showing they are universal on any connected graph other than a path or a cycle, and classically simulable on a cycle. I also prove the same dichotomy for the XY interaction. Free bosons give rise to a model known as BosonSampling. BosonSampling consists of (i) preparing a Fock state of n photons, (ii) interfering these photons in an m-mode linear interferometer, and (iii) measuring the output in the Fock basis. Sampling approximately from the resulting distribution should be classically hard, under reasonable complexity assumptions. Here I show that exact BosonSampling remains hard even if the linear-optical circuit has constant depth. I also report several experiments where three-photon interference was observed in integrated interferometers of various sizes, providing some of the first implementations of BosonSampling in this regime. The experiments also focus on the bosonic bunching behavior and on validation of BosonSampling devices. This thesis contains descriptions of the numerical analyses done on the experimental data, omitted from the corresponding publications.Comment: PhD Thesis, defended at Universidade Federal Fluminense on March 2014. Final version, 208 pages. New results in Chapter 5 correspond to arXiv:1106.1863, arXiv:1207.2126, and arXiv:1308.1463. New results in Chapter 6 correspond to arXiv:1212.2783, arXiv:1305.3188, arXiv:1311.1622 and arXiv:1412.678

    Advances in SCA and RF-DNA Fingerprinting Through Enhanced Linear Regression Attacks and Application of Random Forest Classifiers

    Get PDF
    Radio Frequency (RF) emissions from electronic devices expose security vulnerabilities that can be used by an attacker to extract otherwise unobtainable information. Two realms of study were investigated here, including the exploitation of 1) unintentional RF emissions in the field of Side Channel Analysis (SCA), and 2) intentional RF emissions from physical devices in the field of RF-Distinct Native Attribute (RF-DNA) fingerprinting. Statistical analysis on the linear model fit to measured SCA data in Linear Regression Attacks (LRA) improved performance, achieving 98% success rate for AES key-byte identification from unintentional emissions. However, the presence of non-Gaussian noise required the use of a non-parametric classifier to further improve key guessing attacks. RndF based profiling attacks were successful in very high dimensional data sets, correctly guessing all 16 bytes of the AES key with a 50,000 variable dataset. With variable reduction, Random Forest still outperformed Template Attack for this data set, requiring fewer traces and achieving higher success rates with lower misclassification rate. Finally, the use of a RndF classifier is examined for intentional RF emissions from ZigBee devices to enhance security using RF-DNA fingerprinting. RndF outperformed parametric MDA/ML and non-parametric GRLVQI classifiers, providing up to GS =18.0 dB improvement (reduction in required SNR). Network penetration, measured using rogue ZigBee devices, show that the RndF method improved rogue rejection in noisier environments - gains of up to GS =18.0 dB are realized over previous methods

    Machine Learning and Neutron Sensing in Mobile Nuclear Threat Detection

    Get PDF
    A proof of concept (PoC) neutron/gamma-ray mobile threat detection system was constructed at Oak Ridge National Laboratory. This device, the Dual Detection Localization and Identification (DDLI) system, was designed to detect threat sources at standoff distance using neutron and gamma ray coded aperture imaging. A major research goal of the project was to understand the benefit of neutron sensing in the mobile threat search scenario. To this end, a series of mobile measurements were conducted with the completed DDLI PoC. These measurements indicated that high detection rates would be possible using neutron counting alone in a fully instrumented system. For a 280,000 neutrons per second Cf-252 source placed 15.9 meters away, a 4σ [sigma] detection rate of 99.3% was expected at 5 m/s. These results support the conclusion that neutron sensing enhances the detection capabilities of systems like the DDLI when compared to gamma-only platforms. Advanced algorithms were also investigated to fuse neutron and gamma coded aperture images and suppress background. In a simulated 1-D coded aperture imaging study, machine learning algorithms using both neutron and gamma ray data outperformed gamma-only threshold methods for alarming on weapons grade plutonium. In a separate study, a Random Forest classifier was trained on a source injection dataset from the Large Area Imager, a mobile gamma ray coded aperture system. Geant4 simulations of weapons-grade plutonium (WGPu) were combined with background data measured by the Large Area Imager to create nearly 4000 coded aperture images. At 30 meter standoff and 10 m/s, the Random Forest classifier was able to detect WGPu with error rates as low as 0.65% without spectroscopic information. A background subtracting filter further reduced this error rate to 0.2%. Finally, a background subtraction method based on principal component analysis was shown to improve detection by over 150% in figure of merit

    Building appliances energy performance assessment

    Get PDF
    Trabalho de Projeto de Mestrado, Informática, 2021, Universidade de Lisboa, Faculdade de CiênciasO consumo de energia tem vindo a crescer na União Europeia todos os anos, sendo de prever que, a curto prazo, se torne insustentável. No sentido de prevenir este cenário, a Comissão Europeia decidiu definir uma Estratégia Energética para a União Europeia, destacando dois objetivos: aumentar a eficiência energética e promover a descarbonização. Atualmente, cerca de 72% dos edifícios existentes na União Europeia não são energeticamente eficientes. Este problema motivou-nos à pesquisa e criação de soluções que permitam uma melhor avaliação do consumo energético por dispositivos elétricos em edifícios residenciais. Neste contexto, o trabalho desenvolvido nesta tese consiste no desenho de uma solução de monitorização remota que recolhe informações de consumo energético recorrendo a técnicas de intrusive load monitoring, onde cada dispositivo elétrico individual é continuamente monitorizado quanto ao seu consumo energético. Esta abordagem permite compreender o consumo de energia, em tempo real e no dia-a-dia. Este conhecimento oferece-nos a capacidade de avaliar as diferenças existentes entre as medições laboratoriais (abordagem utilizada no sistema de rotulagem de equipamentos elétricos de acordo com a sua eficiência energética) e os consumos domésticos estimados. Para tal, nesta tese exploram-se abordagens de machine learning que pretendem descrever padrões de consumo, bem como reconhecer marcas, modelos e que funções os dispositivos elétricos estarão a executar. O principal objetivo deste trabalho é desenhar e implementar um protótipo de uma solução de IoT flexível e de baixo custo para avaliar equipamentos elétricos. Será utilizado um conjunto de sensores que recolherá dados relacionados com o consumo de energia e os entrega à plataforma SATO para serem posteriormente processados. O sistema será usado para monitorar aparelhos comumente encontrados em residências. Além disso, o sistema terá a capacidade de monitorizar o consumo de água de aparelhos que necessitem de abastecimento de água, como máquinas de lavar e de lavar louça. Os dados recolhidos serão usados para classificação dos aparelhos e modos de operação dos mesmos, em tempo real, permitindo fornecer relatórios sobre o consumo energético e modo de uso dos aparelhos, com grande grau de detalhe. Os relatórios podem incluir o uso de energia por vários ciclos de operação. Por exemplo, um aparelho pode executar vários ciclos de operação, como uma máquina de lavar que consume diferentes quantidades de energia elétrica e água consoante o modo de operação escolhido pelo utilizador. Toda a informação recolhida pode ser posteriormente utilizada em novos serviços de recomendação que ajudaram os utilizadores a definir melhor as configurações adequadas a um determinado dispositivo, minimizando o consumo energético e melhorando a sua eficiência. Adicionalmente toda esta informação pode ser utilizada para o diagnóstico de avarias e/ou manutenção preventiva. Em termos de proposta, o trabalho desenvolvido nesta tese tem as seguintes contribuições: Sistema de monitorização remota: o sistema de monitorização desenhado e implementado nesta tese avança o estado da arte dos sistemas de monitorização propostos pela literatura devido ao facto de incluir uma lista aprimorada de sensores que podem fornecer mais informações sobre os aparelhos, como o consumo de água da máquina de lavar. Além disso, é altamente flexível e pode ser implementado sem esforço em dispositivos novos ou antigos para monitorização de consumo de recursos. Conjunto de dados de consumo de energia de eletrodomésticos: Os dados recolhidos podem ser usados para futura investigação científica sobre o consumo de consumo de energia, padrões de uso de energia pelos eletrodomésticos e classificação dos mesmos. Abordagem de computação na borda (Edge Computing): O sistema de monitorização proposto explora o paradigma de computação na borda, onde parte da computação de preparação de dados é executada na borda, libertando recursos da nuvem para cálculos essenciais e que necessitem de mais poder computacional. Classificação precisa de dispositivos em tempo real: Coma proposta desenhada nesta tese, podemos classificar os dispositivos com alta precisão, usando os dados recolhidos pelo sistema de monitorização desenvolvido na tese. A abordagem proposta consegue classificar os dispositivos, que são monitorizados, com baixas taxas de falsos positivos. Para fácil compreensão do trabalho desenvolvido nesta tese, de seguida descreve-se a organização do documento. O Capítulo 1 apresenta o problema do consumo de energia na União Europeia e discute o aumento do consumo da mesma. O capítulo apresenta também os principais objetivos e contribuições do trabalho. No Capítulo 2 revê-se o trabalho relacionado em termos de sistema de monitorização remota, que inclui sensores, microcontroladores, processamento e filtragem de sinal. Por fim, este capítulo revê os trabalhos existentes na literatura relacionados com o problema de classificação de dispositivos usando abordagens de machine learning. No Capítulo 3 discutem-se os requisitos do sistema e o projeto de arquitetura conceitual do sistema. Neste capítulo é proposta uma solução de hardware, bem como, o software e firmware necessários à sua operação. Os algoritmos de machine learning necessários à classificação são também discutidos, em termos de configurações necessárias e adequadas ao problema que queremos resolver nesta tese. O Capítulo 4 representa a implementação de um protótipo que servirá de prova de conceito dos mecanismos discutidos no Capítulo 3. Neste capítulo discute-se também a forma de integração do protótipo na plataforma SATO. Com base na implementação feita, no Capítulo 5 especificam-se um conjunto de testes funcionais que permitem avaliar o desempenho da solução proposta e discutem-se os resultados obtidos a partir desses testes. Por fim, o Capítulo 6 apresenta as conclusões e o trabalho futuro que poderá ser desenvolvido partindo da solução atual.Energy consumption is daily growing in European Union (EU). One day it will become hardly sustainable. For this not to happen European Commission decided to implement a European Union Strategy, emphasizing two objectives: increasing energy efficiency and decarbonization. About 72% of all buildings in the EU are not adapted to be energy efficient. This problem encourages us to create solutions that would help assess the energy consumption of appliances at residential houses. In this thesis, we proposed a system that collects data using an intrusive load monitoring approach, where each appliance will have a dedicated monitoring rig to collect the energy consumption data. The proposed solution will help us understand the real-life consumption of each device being monitored and compare the laboratory measurements observed versus domestic consumption estimated by the energy consumption based on the EU energy efficiency labelling system. The system proposed detects device consumption patterns and recognize its brand, model and what actions that appliance is executing, e.g., program of washing in a washing machine. To achieve our goal, we designed a hardware solution capable of collecting sensor data, filtering and send it to a cloud platform (the SATO platform). Additionally, in the cloud, we have a Machine Learning solution that deals with the data and recognizes the appliance and its operation modes. This recognition allows drawing a device/settings profile, which can detect faults and create a recommendation service that helps users define the better settings for a specific appliance, minimizing energy consumption and improving efficiency. Finally, we examine our prototype approach of the system implemented for targeted objectives in this project report. The document describes the experiments that we did and the final results. Our results show that we can identify the appliance and some of its operation modes. The proposed approach must be improved to make the identification of all operation modes. However, the current version of the system shows exciting results. It can be used to support the design of a new labelling system where daily operation measures can be used to support the new classification system. This way, we have an approach that allows improving the energy consumption, making builds more efficient

    Cellular Automata

    Get PDF
    Modelling and simulation are disciplines of major importance for science and engineering. There is no science without models, and simulation has nowadays become a very useful tool, sometimes unavoidable, for development of both science and engineering. The main attractive feature of cellular automata is that, in spite of their conceptual simplicity which allows an easiness of implementation for computer simulation, as a detailed and complete mathematical analysis in principle, they are able to exhibit a wide variety of amazingly complex behaviour. This feature of cellular automata has attracted the researchers' attention from a wide variety of divergent fields of the exact disciplines of science and engineering, but also of the social sciences, and sometimes beyond. The collective complex behaviour of numerous systems, which emerge from the interaction of a multitude of simple individuals, is being conveniently modelled and simulated with cellular automata for very different purposes. In this book, a number of innovative applications of cellular automata models in the fields of Quantum Computing, Materials Science, Cryptography and Coding, and Robotics and Image Processing are presented

    Traveling Salesman Problem

    Get PDF
    This book is a collection of current research in the application of evolutionary algorithms and other optimal algorithms to solving the TSP problem. It brings together researchers with applications in Artificial Immune Systems, Genetic Algorithms, Neural Networks and Differential Evolution Algorithm. Hybrid systems, like Fuzzy Maps, Chaotic Maps and Parallelized TSP are also presented. Most importantly, this book presents both theoretical as well as practical applications of TSP, which will be a vital tool for researchers and graduate entry students in the field of applied Mathematics, Computing Science and Engineering

    Design of a High-Speed Architecture for Stabilization of Video Captured Under Non-Uniform Lighting Conditions

    Get PDF
    Video captured in shaky conditions may lead to vibrations. A robust algorithm to immobilize the video by compensating for the vibrations from physical settings of the camera is presented in this dissertation. A very high performance hardware architecture on Field Programmable Gate Array (FPGA) technology is also developed for the implementation of the stabilization system. Stabilization of video sequences captured under non-uniform lighting conditions begins with a nonlinear enhancement process. This improves the visibility of the scene captured from physical sensing devices which have limited dynamic range. This physical limitation causes the saturated region of the image to shadow out the rest of the scene. It is therefore desirable to bring back a more uniform scene which eliminates the shadows to a certain extent. Stabilization of video requires the estimation of global motion parameters. By obtaining reliable background motion, the video can be spatially transformed to the reference sequence thereby eliminating the unintended motion of the camera. A reflectance-illuminance model for video enhancement is used in this research work to improve the visibility and quality of the scene. With fast color space conversion, the computational complexity is reduced to a minimum. The basic video stabilization model is formulated and configured for hardware implementation. Such a model involves evaluation of reliable features for tracking, motion estimation, and affine transformation to map the display coordinates of a stabilized sequence. The multiplications, divisions and exponentiations are replaced by simple arithmetic and logic operations using improved log-domain computations in the hardware modules. On Xilinx\u27s Virtex II 2V8000-5 FPGA platform, the prototype system consumes 59% logic slices, 30% flip-flops, 34% lookup tables, 35% embedded RAMs and two ZBT frame buffers. The system is capable of rendering 180.9 million pixels per second (mpps) and consumes approximately 30.6 watts of power at 1.5 volts. With a 1024×1024 frame, the throughput is equivalent to 172 frames per second (fps). Future work will optimize the performance-resource trade-off to meet the specific needs of the applications. It further extends the model for extraction and tracking of moving objects as our model inherently encapsulates the attributes of spatial distortion and motion prediction to reduce complexity. With these parameters to narrow down the processing range, it is possible to achieve a minimum of 20 fps on desktop computers with Intel Core 2 Duo or Quad Core CPUs and 2GB DDR2 memory without a dedicated hardware

    Designing energy-efficient computing systems using equalization and machine learning

    Full text link
    As technology scaling slows down in the nanometer CMOS regime and mobile computing becomes more ubiquitous, designing energy-efficient hardware for mobile systems is becoming increasingly critical and challenging. Although various approaches like near-threshold computing (NTC), aggressive voltage scaling with shadow latches, etc. have been proposed to get the most out of limited battery life, there is still no “silver bullet” to increasing power-performance demands of the mobile systems. Moreover, given that a mobile system could operate in a variety of environmental conditions, like different temperatures, have varying performance requirements, etc., there is a growing need for designing tunable/reconfigurable systems in order to achieve energy-efficient operation. In this work we propose to address the energy- efficiency problem of mobile systems using two different approaches: circuit tunability and distributed adaptive algorithms. Inspired by the communication systems, we developed feedback equalization based digital logic that changes the threshold of its gates based on the input pattern. We showed that feedback equalization in static complementary CMOS logic enabled up to 20% reduction in energy dissipation while maintaining the performance metrics. We also achieved 30% reduction in energy dissipation for pass-transistor digital logic (PTL) with equalization while maintaining performance. In addition, we proposed a mechanism that leverages feedback equalization techniques to achieve near optimal operation of static complementary CMOS logic blocks over the entire voltage range from near threshold supply voltage to nominal supply voltage. Using energy-delay product (EDP) as a metric we analyzed the use of the feedback equalizer as part of various sequential computational blocks. Our analysis shows that for near-threshold voltage operation, when equalization was used, we can improve the operating frequency by up to 30%, while the energy increase was less than 15%, with an overall EDP reduction of ≈10%. We also observe an EDP reduction of close to 5% across entire above-threshold voltage range. On the distributed adaptive algorithm front, we explored energy-efficient hardware implementation of machine learning algorithms. We proposed an adaptive classifier that leverages the wide variability in data complexity to enable energy-efficient data classification operations for mobile systems. Our approach takes advantage of varying classification hardness across data to dynamically allocate resources and improve energy efficiency. On average, our adaptive classifier is ≈100× more energy efficient but has ≈1% higher error rate than a complex radial basis function classifier and is ≈10× less energy efficient but has ≈40% lower error rate than a simple linear classifier across a wide range of classification data sets. We also developed a field of groves (FoG) implementation of random forests (RF) that achieves an accuracy comparable to Convolutional Neural Networks (CNN) and Support Vector Machines (SVM) under tight energy budgets. The FoG architecture takes advantage of the fact that in random forests a small portion of the weak classifiers (decision trees) might be sufficient to achieve high statistical performance. By dividing the random forest into smaller forests (Groves), and conditionally executing the rest of the forest, FoG is able to achieve much higher energy efficiency levels for comparable error rates. We also take advantage of the distributed nature of the FoG to achieve high level of parallelism. Our evaluation shows that at maximum achievable accuracies FoG consumes ≈1.48×, ≈24×, ≈2.5×, and ≈34.7× lower energy per classification compared to conventional RF, SVM-RBF , Multi-Layer Perceptron Network (MLP), and CNN, respectively. FoG is 6.5× less energy efficient than SVM-LR, but achieves 18% higher accuracy on average across all considered datasets
    corecore