426,310 research outputs found

    Center-based Clustering under Perturbation Stability

    Full text link
    Clustering under most popular objective functions is NP-hard, even to approximate well, and so unlikely to be efficiently solvable in the worst case. Recently, Bilu and Linial \cite{Bilu09} suggested an approach aimed at bypassing this computational barrier by using properties of instances one might hope to hold in practice. In particular, they argue that instances in practice should be stable to small perturbations in the metric space and give an efficient algorithm for clustering instances of the Max-Cut problem that are stable to perturbations of size O(n1/2)O(n^{1/2}). In addition, they conjecture that instances stable to as little as O(1) perturbations should be solvable in polynomial time. In this paper we prove that this conjecture is true for any center-based clustering objective (such as kk-median, kk-means, and kk-center). Specifically, we show we can efficiently find the optimal clustering assuming only stability to factor-3 perturbations of the underlying metric in spaces without Steiner points, and stability to factor 2+32+\sqrt{3} perturbations for general metrics. In particular, we show for such instances that the popular Single-Linkage algorithm combined with dynamic programming will find the optimal clustering. We also present NP-hardness results under a weaker but related condition

    The effects of intrinsic noise on the behaviour of bistable cell regulatory systems under quasi-steady state conditions

    Full text link
    We analyse the effect of intrinsic fluctuations on the properties of bistable stochastic systems with time scale separation operating under1 quasi-steady state conditions. We first formulate a stochastic generalisation of the quasi-steady state approximation based on the semi-classical approximation of the partial differential equation for the generating function associated with the Chemical Master Equation. Such approximation proceeds by optimising an action functional whose associated set of Euler-Lagrange (Hamilton) equations provide the most likely fluctuation path. We show that, under appropriate conditions granting time scale separation, the Hamiltonian can be re-scaled so that the set of Hamilton equations splits up into slow and fast variables, whereby the quasi-steady state approximation can be applied. We analyse two particular examples of systems whose mean-field limit has been shown to exhibit bi-stability: an enzyme-catalysed system of two mutually-inhibitory proteins and a gene regulatory circuit with self-activation. Our theory establishes that the number of molecules of the conserved species are order parameters whose variation regulates bistable behaviour in the associated systems beyond the predictions of the mean-field theory. This prediction is fully confirmed by direct numerical simulations using the stochastic simulation algorithm. This result allows us to propose strategies whereby, by varying the number of molecules of the three conserved chemical species, cell properties associated to bistable behaviour (phenotype, cell-cycle status, etc.) can be controlled.Comment: 33 pages, 9 figures, accepted for publication in the Journal of Chemical Physic

    Operator splittings and spatial approximations for evolution equations

    Get PDF
    The convergence of various operator splitting procedures, such as the sequential, the Strang and the weighted splitting, is investigated in the presence of a spatial approximation. To this end a variant of Chernoff's product formula is proved. The methods are applied to abstract partial delay differential equations.Comment: to appear in J. Evol. Equations. Reviewers comments are incorporate
    • …
    corecore