465 research outputs found

    Linear kernels for outbranching problems in sparse digraphs

    Full text link
    In the kk-Leaf Out-Branching and kk-Internal Out-Branching problems we are given a directed graph DD with a designated root rr and a nonnegative integer kk. The question is to determine the existence of an outbranching rooted at rr that has at least kk leaves, or at least kk internal vertices, respectively. Both these problems were intensively studied from the points of view of parameterized complexity and kernelization, and in particular for both of them kernels with O(k2)O(k^2) vertices are known on general graphs. In this work we show that kk-Leaf Out-Branching admits a kernel with O(k)O(k) vertices on H\mathcal{H}-minor-free graphs, for any fixed family of graphs H\mathcal{H}, whereas kk-Internal Out-Branching admits a kernel with O(k)O(k) vertices on any graph class of bounded expansion.Comment: Extended abstract accepted for IPEC'15, 27 page

    On (2-d)-kernels in the cartesian product of graphs

    Get PDF
    In this paper we study the problem of the existence of (2-d)-kernels in the cartesian product of graphs. We give sufficient conditions for the existence of (2-d)-kernels in the cartesian product and also we consider the number of (2-d)-kernels

    A Polyhedral Description of Kernels

    Get PDF
    postprin

    Tournaments with kernels by monochromatic paths

    Get PDF
    In this paper we prove the existence of kernels by monochromatic paths in m-coloured tournaments in which every cyclic tournament of order 3 is atmost 2-coloured in addition to other restrictions on the colouring ofcertain subdigraphs. We point out that in all previous results on kernelsby monochromatic paths in arc coloured tournaments, certain smallsubstructures are required to be monochromatic or monochromatic with atmost one exception, whereas here we allow up to three colours in two smallsubstructures
    corecore