482,733 research outputs found

    Directed percolation with incubation times

    Full text link
    We introduce a model for directed percolation with a long-range temporal diffusion, while the spatial diffusion is kept short ranged. In an interpretation of directed percolation as an epidemic process, this non-Markovian modification can be understood as incubation times, which are distributed accordingly to a Levy distribution. We argue that the best approach to find the effective action for this problem is through a generalization of the Cardy-Sugar method, adding the non-Markovian features into the geometrical properties of the lattice. We formulate a field theory for this problem and renormalize it up to one loop in a perturbative expansion. We solve the various technical difficulties that the integrations possess by means of an asymptotic analysis of the divergences. We show the absence of field renormalization at one-loop order, and we argue that this would be the case to all orders in perturbation theory. Consequently, in addition to the characteristic scaling relations of directed percolation, we find a scaling relation valid for the critical exponents of this theory. In this universality class, the critical exponents vary continuously with the Levy parameter.Comment: 17 pages, 7 figures. v.2: minor correction

    Absorption and Tensility of Bioactive Sutures Prepared for Cell Transplantation

    Get PDF
    Biodegradable scaffolds are widely used to transplant stem cells into various tissues. Recent studies showed that living stem cells can be attached to the surface of absorbable sutures in vitro. Soaking the absorbable material polyglactin in a cell culture medium and thereby creating a stem cell biofilm on its surface may initiate the absorption process even before implantation; therefore, the physicochemical properties of the suture may be compromised in vivo. We found that pre-incubation of sutures in cell culture media in vitro results in tensile strength reduction and faster suture absorption in a rat model of muscle injury. Shorter incubation times of up to 48 h do not influence absorption or tensility; therefore, it is advisable to limit incubation times to two days for polyglactin-based cell delivery protocols

    Incubation Time Measurements in Thin-Film Deposition

    Get PDF
    Studies on the initial growth or nucleation of materials and research on selective deposition often mention an incubation time. Many techniques exist to determine the incubation time. The outcome can be very different for each technique when the same nucleation process is considered. For the first time we have given a simple model which shows that several incubation times can be expected if different methods are used. One of the most popular methods, plotting the mass or thickness as a function of time and defining the incubation time as the intercept on the x-axis, is not a good method. In particular, a meaningful incubation time is found only if a layer-by-layer growth mechanism occurs right from the start. Ellipsometry can be used in situ and is a much more sensitive method, but this technique needs more research to correlate the nucleation process with the data obtained using this technique. The determination of the nucleus density using scanning electron microscopy or atomic force microscope is the most accurate method, yet needs a lot of experiments. Without a detailed description of the measurement method the incubation time is a meaningless quantity

    In Vitro Versus in Situ Ruminal Biohydrogenation of Unsaturated Fatty Acids from a Raw or Extruded Mixture of Ground Canola Seed/Canola Meal

    Get PDF
    Raw or extruded blends of ground canola seeds and canola meal were used to compare in vitro and in situ lag times and rates of disappearance due to ruminal biohydrogenation of unsaturated fatty acids. The in situ study resulted in higher lag times for biohydrogenation for polyunsaturated fatty acids and lower rates of biohydrogenation of unsaturated fatty acids than the in vitro study, so the in situ biohydrogenation of polyunsaturated fatty acids was not complete at 24 h of incubation. With both methods, rates of biohydrogenation of polyunsaturated fatty acids were higher than for cis-9C18:1. Extrusion did not affect the rate of biohydrogenation of cis-9C18:1, but resulted in higher rates of biohydrogenation of polyunsaturated fatty acids with higher proportions of trans intermediates of biohydrogenation at 4 h of incubation in vitro and at 8 h of incubation in situ. These results suggest that extrusion affects the isomerization of polyunsaturated fatty acids, rather than the hydrogenation steps. In conclusion, in vitro and in situ methods can both show differences of ruminal metabolism of unsaturated fatty acids due to processing, but the methods provide very different estimates of the rates of disappearance due to biohydrogenation

    Significant differences in incubation times in sheep infected with bovine spongiform encephalopathy result from variation at codon 141 in the PRNP gene

    Get PDF
    The susceptibility of sheep to prion infection is linked to variation in the PRNP gene, which encodes the prion protein. Common polymorphisms occur at codons 136, 154 and 171. Sheep which are homozygous for the A<sub>136</sub>R<sub>154</sub>Q<sub>171</sub> allele are the most susceptible to bovine spongiform encephalopathy (BSE). The effect of other polymorphisms on BSE susceptibility is unknown. We orally infected ARQ/ARQ Cheviot sheep with equal amounts of BSE brain homogenate and a range of incubation periods was observed. When we segregated sheep according to the amino acid (L or F) encoded at codon 141 of the PRNP gene, the shortest incubation period was observed in LL141 sheep, whilst incubation periods in FF<sub>141</sub> and LF<sub>141</sub> sheep were significantly longer. No statistically significant differences existed in the expression of total prion protein or the disease-associated isoform in BSE-infected sheep within each genotype subgroup. This suggested that the amino acid encoded at codon 141 probably affects incubation times through direct effects on protein misfolding rates