1,233,701 research outputs found

    Keeping in touch: A handbook for digital inclusionthrough socially engaged practice

    Get PDF
    This handbook is intended to be a useful introduction to things to think about when developing a ‘socially engaged’ project that uses digital media or mobile technologies in some way. It is written for as wide an audience as possible,including neighbourhood partnerships, community activists, voluntary organisations and statutory agencies. It includes guidelines for increasing digital inclusion through socially engaged practice, with case study examples of good-practice projects and some useful practical tips.The handbook begins by clarifying what we mean by ‘socially engaged practice’ and ‘digital inclusion’. It then explains the benefits of such practice and goes on to outline nine key elements of socially engaged practice for successfullynurturing greater digital inclusion, using Knowle West Media Centre (KWMC) projects as examples.This content has been developed through ongoing evaluation of projects at KWMC and the ‘Keeping in Touch’ project

    Functional and structural brain differences associated with mirror-touch synaesthesia

    Get PDF
    Observing touch is known to activate regions of the somatosensory cortex but the interpretation of this finding is controversial (e.g. does it reflect the simulated action of touching or the simulated reception of touch?). For most people, observing touch is not linked to reported experiences of feeling touch but in some people it is (mirror-touch synaesthetes). We conducted an fMRI study in which participants (mirror-touch synaesthetes, controls) watched movies of stimuli (face, dummy, object) being touched or approached. In addition we examined whether mirror touch synaesthesia is associated with local changes of grey and white matter volume in the brain using VBM (voxel-based morphometry). Both synaesthetes and controls activated the somatosensory system (primary and secondary somatosensory cortices, SI and SII) when viewing touch, and the same regions were activated (by a separate localiser) when feeling touch — i.e. there is a mirror system for touch. However, when comparing the two groups, we found evidence that SII seems to play a particular important role in mirror-touch synaesthesia: in synaesthetes, but not in controls, posterior SII was active for watching touch to a face (in addition to SI and posterior temporal lobe); activity in SII correlated with subjective intensity measures of mirror-touch synaesthesia (taken outside the scanner), and we observed an increase in grey matter volume within the SII of the synaesthetes' brains. In addition, the synaesthetes showed hypo-activity when watching touch to a dummy in posterior SII. We conclude that the secondary somatosensory cortex has a key role in this form of synaesthesia

    Superior Facial Expression, But Not Identity Recognition, in Mirror-Touch Synesthesia

    Get PDF
    Simulation models of expression recognition contend that to understand another's facial expressions, individuals map the perceived expression onto the same sensorimotor representations that are active during the experience of the perceived emotion. To investigate this view, the present study examines facial expression and identity recognition abilities in a rare group of participants who show facilitated sensorimotor simulation (mirror-touch synesthetes). Mirror-touch synesthetes experience touch on their own body when observing touch to another person. These experiences have been linked to heightened sensorimotor simulation in the shared-touch network (brain regions active during the passive observation and experience of touch). Mirror-touch synesthetes outperformed nonsynesthetic participants on measures of facial expression recognition, but not on control measures of face memory or facial identity perception. These findings imply a role for sensorimotor simulation processes in the recognition of facial affect, but not facial identity

    A chromatin modifying enzyme, SDG8, is involved in morphological, gene expression, and epigenetic responses to mechanical stimulation

    Get PDF
    Thigmomorphogenesis is viewed as being a response process of acclimation to short repetitive bursts of mechanical stimulation or touch. The underlying molecular mechanisms that coordinate changes in how touch signals lead to long-term morphological changes are enigmatic. Touch responsive gene expression is rapid and transient, and no transcription factor or DNA regulatory motif has been reported that could confer a genome wide mechanical stimulus. We report here on a chromatin modifying enzyme, SDG8/ASHH2, which can regulate the expression of many touch responsive genes identified in Arabidopsis. SDG8 is required for the permissive expression of touch induced genes; and the loss of function of sdg8 perturbs the maximum levels of induction on selected touch gene targets. SDG8 is required to maintain permissive H3K4 trimethylation marks surrounding the Arabidopsis touch-inducible gene TOUCH 3 (TCH3), which encodes a calmodulin-like protein (CML12). The gene neighboring was also slightly down regulated, revealing a new target for SDG8 mediated chromatin modification. Finally, sdg8 mutants show perturbed morphological response to wind-agitated mechanical stimuli, implicating an epigenetic memory-forming process in the acclimation response of thigmomorphogenesis

    Quantitative and functional post-translational modification proteomics reveals that TREPH1 plays a role in plant thigmomorphogenesis

    Full text link
    Plants can sense both intracellular and extracellular mechanical forces and can respond through morphological changes. The signaling components responsible for mechanotransduction of the touch response are largely unknown. Here, we performed a high-throughput SILIA (stable isotope labeling in Arabidopsis)-based quantitative phosphoproteomics analysis to profile changes in protein phosphorylation resulting from 40 seconds of force stimulation in Arabidopsis thaliana. Of the 24 touch-responsive phosphopeptides identified, many were derived from kinases, phosphatases, cytoskeleton proteins, membrane proteins and ion transporters. TOUCH-REGULATED PHOSPHOPROTEIN1 (TREPH1) and MAP KINASE KINASE 2 (MKK2) and/or MKK1 became rapidly phosphorylated in touch-stimulated plants. Both TREPH1 and MKK2 are required for touch-induced delayed flowering, a major component of thigmomorphogenesis. The treph1-1 and mkk2 mutants also exhibited defects in touch-inducible gene expression. A non-phosphorylatable site-specific isoform of TREPH1 (S625A) failed to restore touch-induced flowering delay of treph1-1, indicating the necessity of S625 for TREPH1 function and providing evidence consistent with the possible functional relevance of the touch-regulated TREPH1 phosphorylation. Bioinformatic analysis and biochemical subcellular fractionation of TREPH1 protein indicate that it is a soluble protein. Altogether, these findings identify new protein players in Arabidopsis thigmomorphogenesis regulation, suggesting that protein phosphorylation may play a critical role in plant force responses

    The origin of pointing: Evidence for the touch hypothesis

    No full text
    Pointing gestures play a foundational role in human language, but up to now, we have not known where these gestures come from. Here, we investigated the hypothesis that pointing originates in touch. We found, first, that when pointing at a target, children and adults oriented their fingers not as though trying to create an “}arrow{” that picks out the target but instead as though they were aiming to touch it; second, that when pointing at a target at an angle, participants rotated their wrists to match that angle as they would if they were trying to touch the target; and last, that young children interpret pointing gestures as if they were attempts to touch things, not as arrows. These results provide the first substantial evidence that pointing originates in touch

    An acoustic multi-touch sensing method using amplitude disturbed ultrasonic wave diffraction patterns

    Get PDF
    This paper proposes an acoustic multi-touch tactile sensing method. The proposed method is based on an amplitude disturbed ultrasonic wave diffraction pattern. An A0 Lamb wave transmitted in a thin finite copper plate is processed to provide tactile information, for one or two fingers. A touch event is localized by identifying the diffraction signals among a database of diffracted Lamb wave references. Statistic models are used to improve the localization reliability. An artificial silicone finger is used in the calibration procedure. This touch interface is evaluated as a 2-touch interface
    corecore