152,453 research outputs found

    Immunological backbone of uveal melanoma: is there a rationale for immunotherapy?

    Get PDF
    No standard treatment has been established for metastatic uveal melanoma (mUM). Immunotherapy is commonly used for this disease even though UM has not been included in phase III clinical trials with checkpoint inhibitors. Unfortunately, only a minority of patients obtain a clinical benefit with immunotherapy. The immunological features of mUM were reviewed in order to understand if immunotherapy could still play a role for this disease

    Regulation of cell death in cancer - possible implications for immunotherapy

    Get PDF
    Since most anticancer therapies including immunotherapy trigger programmed cell death in cancer cells, defective cell death programs can lead to treatment resistance and tumor immune escape. Therefore, evasion of programmed cell death may provide one possible explanation as to why cancer immunotherapy has so far only shown modest clinical benefits for children with cancer. A better understanding of the molecular mechanisms that regulate sensitivity and resistance to programmed cell death is expected to open new perspectives for the development of novel experimental treatment strategies to enhance the efficacy of cancer immunotherapy in the future

    A systematic review and economic evaluation of subcutaneous and sublingual allergen immunotherapy in adults and children with seasonal allergic rhinitis

    Get PDF
    © Queen’s Printer and Controller of HMSO 2013Severe allergic rhinitis uncontrolled by conventional medication can substantially affect quality of life. Immunotherapy involves administering increasing doses of a specific allergen, with the aim of reducing sensitivity and symptomatic reactions. Recent meta-analyses have concluded that both subcutaneous immunotherapy (SCIT) and sublingual immunotherapy (SLIT) are more effective than placebo in reducing symptoms. It is uncertain which route of administration is more effective and whether or not treatment is cost-effective.National Institute for Health Research Health Technology Assessment programm

    Addressing current challenges in cancer immunotherapy with mathematical and computational modeling

    Full text link
    The goal of cancer immunotherapy is to boost a patient's immune response to a tumor. Yet, the design of an effective immunotherapy is complicated by various factors, including a potentially immunosuppressive tumor microenvironment, immune-modulating effects of conventional treatments, and therapy-related toxicities. These complexities can be incorporated into mathematical and computational models of cancer immunotherapy that can then be used to aid in rational therapy design. In this review, we survey modeling approaches under the umbrella of the major challenges facing immunotherapy development, which encompass tumor classification, optimal treatment scheduling, and combination therapy design. Although overlapping, each challenge has presented unique opportunities for modelers to make contributions using analytical and numerical analysis of model outcomes, as well as optimization algorithms. We discuss several examples of models that have grown in complexity as more biological information has become available, showcasing how model development is a dynamic process interlinked with the rapid advances in tumor-immune biology. We conclude the review with recommendations for modelers both with respect to methodology and biological direction that might help keep modelers at the forefront of cancer immunotherapy development.Comment: Accepted for publication in the Journal of the Royal Society Interfac

    Role of noninvasive molecular imaging in determining response

    Get PDF
    The intersection of immunotherapy and radiation oncology is a rapidly evolving area of preclinical and clinical investigation. The strategy of combining radiation and immunotherapy to enhance local and systemic antitumor immune responses is intriguing yet largely unproven in the clinical setting because the mechanisms of synergy and the determinants of therapeutic response remain undefined. In recent years, several noninvasive molecular imaging approaches have emerged as a platform to interrogate the tumor immune microenvironment. These tools have the potential to serve as robust biomarkers for cancer immunotherapy and may hold several advantages over conventional anatomic imaging modalities and contemporary invasive tissue acquisition techniques. Given the key and expanding role of precision imaging in radiation oncology for patient selection, target delineation, image guided treatment delivery, and response assessment, noninvasive molecular-specific imaging may be uniquely suited to evaluate radiation/immunotherapy combinations. Herein, we describe several experimental imaging-based strategies that are currently being explored to characterize in vivo immune responses, and we review a growing body of preclinical data and nascent clinical experience with immuno-positron emission tomography molecular imaging as a putative biomarker for cancer immunotherapy. Finally, we discuss practical considerations for clinical translation to implement noninvasive molecular imaging of immune checkpoint molecules, immune cells, or associated elements of the antitumor immune response with a specific emphasis on its potential application at the interface of radiation oncology and immuno-oncology

    Immunotherapy of lung cancer: An update

    Get PDF
    In Germany lung cancer is the leading cause of cancer-associated death in men. Surgery, chemotherapy and radiation may enhance survival of patients suffering from lung cancer but the enhancement is typically transient and mostly absent with advanced disease; eventually more than 90% of lung cancer patients will die of disease. New approaches to the treatment of lung cancer are urgently needed. Immunotherapy may represent one new approach with low toxicity and high specificity but implementation has been a challenge because of the poor antigenic characterization of these tumors and their ability to escape immune responses. Several different immunotherapeutic treatment strategies have been developed. This review examines the current state of development and recent advances with respect to non-specific immune stimulation, cellular immunotherapy ( specific and non-specific), therapeutic cancer vaccines and gene therapy for lung cancer. The focus is primarily placed on immunotherapeutic cancer treatments that are already in clinical trial or well progressed in preclinical studies. Although there seems to be a promising future for immunotherapy in lung cancer, presently there is not standard immunotherapy available for clinical routine
    corecore