480 research outputs found

    A Forensically Sound Adversary Model for Mobile Devices

    Full text link
    In this paper, we propose an adversary model to facilitate forensic investigations of mobile devices (e.g. Android, iOS and Windows smartphones) that can be readily adapted to the latest mobile device technologies. This is essential given the ongoing and rapidly changing nature of mobile device technologies. An integral principle and significant constraint upon forensic practitioners is that of forensic soundness. Our adversary model specifically considers and integrates the constraints of forensic soundness on the adversary, in our case, a forensic practitioner. One construction of the adversary model is an evidence collection and analysis methodology for Android devices. Using the methodology with six popular cloud apps, we were successful in extracting various information of forensic interest in both the external and internal storage of the mobile device

    Forensic investigation of small-scale digital devices: a futuristic view

    Get PDF
    Small-scale digital devices like smartphones, smart toys, drones, gaming consoles, tablets, and other personal data assistants have now become ingrained constituents in our daily lives. These devices store massive amounts of data related to individual traits of users, their routine operations, medical histories, and financial information. At the same time, with continuously evolving technology, the diversity in operating systems, client storage localities, remote/cloud storages and backups, and encryption practices renders the forensic analysis task multi-faceted. This makes forensic investigators having to deal with an array of novel challenges. This study reviews the forensic frameworks and procedures used in investigating small-scale digital devices. While highlighting the challenges faced by digital forensics, we explore how cutting-edge technologies like Blockchain, Artificial Intelligence, Machine Learning, and Data Science may play a role in remedying concerns. The review aims to accumulate state-of-the-art and identify a futuristic approach for investigating SSDDs

    Letter from the Special Issue Editor

    Get PDF
    Editorial work for DEBULL on a special issue on data management on Storage Class Memory (SCM) technologies

    IOS Device Forensics

    Get PDF
    Many people today have an iPhone, iPad or iPod. Not many would realize that valuable information is stored on these devices. When a crime occurs, an iOS Device could hold key information to help solve said crime that criminals are not aware are present on the device. This can include GPS information as well as application history on the device itself. The project I wish to do and complete is to create a class where students can learn the about iOS Forensics. Student will be able to learn the basics of an iDevice, as well as how to work with forensics tools to acquire the information in an efficient manner. The class will also introduce forensic tools that can be used with iOS Devices. These tools can include Open Source and Commercial forensic tools. This class will be offered to both Graduates and Undergraduates at Governors State University. It will act as a beginner’s class, for individuals who want to learn more and have an interest in iOS Forensics

    Mobile Forensics – The File Format Handbook

    Get PDF
    This open access book summarizes knowledge about several file systems and file formats commonly used in mobile devices. In addition to the fundamental description of the formats, there are hints about the forensic value of possible artefacts, along with an outline of tools that can decode the relevant data. The book is organized into two distinct parts: Part I describes several different file systems that are commonly used in mobile devices. · APFS is the file system that is used in all modern Apple devices including iPhones, iPads, and even Apple Computers, like the MacBook series. · Ext4 is very common in Android devices and is the successor of the Ext2 and Ext3 file systems that were commonly used on Linux-based computers. · The Flash-Friendly File System (F2FS) is a Linux system designed explicitly for NAND Flash memory, common in removable storage devices and mobile devices, which Samsung Electronics developed in 2012. · The QNX6 file system is present in Smartphones delivered by Blackberry (e.g. devices that are using Blackberry 10) and modern vehicle infotainment systems that use QNX as their operating system. Part II describes five different file formats that are commonly used on mobile devices. · SQLite is nearly omnipresent in mobile devices with an overwhelming majority of all mobile applications storing their data in such databases. · The second leading file format in the mobile world are Property Lists, which are predominantly found on Apple devices. · Java Serialization is a popular technique for storing object states in the Java programming language. Mobile application (app) developers very often resort to this technique to make their application state persistent. · The Realm database format has emerged over recent years as a possible successor to the now ageing SQLite format and has begun to appear as part of some modern applications on mobile devices. · Protocol Buffers provide a format for taking compiled data and serializing it by turning it into bytes represented in decimal values, which is a technique commonly used in mobile devices. The aim of this book is to act as a knowledge base and reference guide for digital forensic practitioners who need knowledge about a specific file system or file format. It is also hoped to provide useful insight and knowledge for students or other aspiring professionals who want to work within the field of digital forensics. The book is written with the assumption that the reader will have some existing knowledge and understanding about computers, mobile devices, file systems and file formats

    Forensic Analysis of WhatsApp on Android Smartphones

    Get PDF
    Android forensics has evolved over time offering significant opportunities and exciting challenges. On one hand, being an open source platform Android is giving developers the freedom to contribute to the rapid growth of the Android market whereas on the other hand Android users may not be aware of the security and privacy implications of installing these applications on their phones. Users may assume that a password-locked device protects their personal information, but applications may retain private information on devices, in ways that users might not anticipate. In this thesis we will be concentrating on one such application called \u27WhatsApp\u27, a popular social networking application. We will be forming an outline on how forensic investigators can extract useful information from WhatsApp and from similar applications installed on an Android platform. Our area of focus is extraction and analysis of application user data from non-volatile external storage and the volatile memory (RAM) of an Android device
    • …
    corecore