219 research outputs found

    Speaker recognition by means of restricted Boltzmann machine adaptation

    Get PDF
    Restricted Boltzmann Machines (RBMs) have shown success in speaker recognition. In this paper, RBMs are investigated in a framework comprising a universal model training and model adaptation. Taking advantage of RBM unsupervised learning algorithm, a global model is trained based on all available background data. This general speaker-independent model, referred to as URBM, is further adapted to the data of a specific speaker to build speaker-dependent model. In order to show its effectiveness, we have applied this framework to two different tasks. It has been used to discriminatively model target and impostor spectral features for classification. It has been also utilized to produce a vector-based representation for speakers. This vector-based representation, similar to i-vector, can be further used for speaker recognition using either cosine scoring or Probabilistic Linear Discriminant Analysis (PLDA). The evaluation is performed on the core test condition of the NIST SRE 2006 database.Peer ReviewedPostprint (author's final draft

    From features to speaker vectors by means of restricted Boltzmann machine adaptation

    Get PDF
    Restricted Boltzmann Machines (RBMs) have shown success in different stages of speaker recognition systems. In this paper, we propose a novel framework to produce a vector-based representation for each speaker, which will be referred to as RBM-vector. This new approach maps the speaker spectral features to a single fixed-dimensional vector carrying speaker-specific information. In this work, a global model, referred to as Universal RBM (URBM), is trained taking advantage of RBM unsupervised learning capabilities. Then, this URBM is adapted to the data of each speaker in the development, enrolment and evaluation datasets. The network connection weights of the adapted RBMs are further concatenated and subject to a whitening with dimension reduction stage to build the speaker vectors. The evaluation is performed on the core test condition of the NIST SRE 2006 database, and it is shown that RBM-vectors achieve 15% relative improvement in terms of EER compared to i-vectors using cosine scoring. The score fusion with i-vector attains more than 24% relative improvement. The interest of this result for score fusion yields on the fact that both vectors are produced in an unsupervised fashion and can be used instead of i-vector/PLDA approach, when no data label is available. Results obtained for RBM-vector/PLDA framework is comparable with the ones from i-vector/PLDA. Their score fusion achieves 14% relative improvement compared to i-vector/PLDA.Peer ReviewedPostprint (published version

    Latent Class Model with Application to Speaker Diarization

    Get PDF
    In this paper, we apply a latent class model (LCM) to the task of speaker diarization. LCM is similar to Patrick Kenny's variational Bayes (VB) method in that it uses soft information and avoids premature hard decisions in its iterations. In contrast to the VB method, which is based on a generative model, LCM provides a framework allowing both generative and discriminative models. The discriminative property is realized through the use of i-vector (Ivec), probabilistic linear discriminative analysis (PLDA), and a support vector machine (SVM) in this work. Systems denoted as LCM-Ivec-PLDA, LCM-Ivec-SVM, and LCM-Ivec-Hybrid are introduced. In addition, three further improvements are applied to enhance its performance. 1) Adding neighbor windows to extract more speaker information for each short segment. 2) Using a hidden Markov model to avoid frequent speaker change points. 3) Using an agglomerative hierarchical cluster to do initialization and present hard and soft priors, in order to overcome the problem of initial sensitivity. Experiments on the National Institute of Standards and Technology Rich Transcription 2009 speaker diarization database, under the condition of a single distant microphone, show that the diarization error rate (DER) of the proposed methods has substantial relative improvements compared with mainstream systems. Compared to the VB method, the relative improvements of LCM-Ivec-PLDA, LCM-Ivec-SVM, and LCM-Ivec-Hybrid systems are 23.5%, 27.1%, and 43.0%, respectively. Experiments on our collected database, CALLHOME97, CALLHOME00 and SRE08 short2-summed trial conditions also show that the proposed LCM-Ivec-Hybrid system has the best overall performance

    Attentive Statistics Pooling for Deep Speaker Embedding

    Full text link
    This paper proposes attentive statistics pooling for deep speaker embedding in text-independent speaker verification. In conventional speaker embedding, frame-level features are averaged over all the frames of a single utterance to form an utterance-level feature. Our method utilizes an attention mechanism to give different weights to different frames and generates not only weighted means but also weighted standard deviations. In this way, it can capture long-term variations in speaker characteristics more effectively. An evaluation on the NIST SRE 2012 and the VoxCeleb data sets shows that it reduces equal error rates (EERs) from the conventional method by 7.5% and 8.1%, respectively.Comment: Proc. Interspeech 2018, pp2252--2256. arXiv admin note: text overlap with arXiv:1809.0931
    • …
    corecore