2,192 research outputs found

    Near-colorings: non-colorable graphs and NP-completeness

    Full text link
    A graph G is (d_1,..,d_l)-colorable if the vertex set of G can be partitioned into subsets V_1,..,V_l such that the graph G[V_i] induced by the vertices of V_i has maximum degree at most d_i for all 1 <= i <= l. In this paper, we focus on complexity aspects of such colorings when l=2,3. More precisely, we prove that, for any fixed integers k,j,g with (k,j) distinct form (0,0) and g >= 3, either every planar graph with girth at least g is (k,j)-colorable or it is NP-complete to determine whether a planar graph with girth at least g is (k,j)-colorable. Also, for any fixed integer k, it is NP-complete to determine whether a planar graph that is either (0,0,0)-colorable or non-(k,k,1)-colorable is (0,0,0)-colorable. Additionally, we exhibit non-(3,1)-colorable planar graphs with girth 5 and non-(2,0)-colorable planar graphs with girth 7

    Locating-dominating sets and identifying codes in graphs of girth at least 5

    Full text link
    Locating-dominating sets and identifying codes are two closely related notions in the area of separating systems. Roughly speaking, they consist in a dominating set of a graph such that every vertex is uniquely identified by its neighbourhood within the dominating set. In this paper, we study the size of a smallest locating-dominating set or identifying code for graphs of girth at least 5 and of given minimum degree. We use the technique of vertex-disjoint paths to provide upper bounds on the minimum size of such sets, and construct graphs who come close to meet these bounds.Comment: 20 pages, 9 figure
    corecore