75 research outputs found

    A Reissner-Mindlin plate formulation using symmetric Hu-Zhang elements via polytopal transformations

    Full text link
    In this work we develop new finite element discretisations of the shear-deformable Reissner--Mindlin plate problem based on the Hellinger-Reissner principle of symmetric stresses. Specifically, we use conforming Hu-Zhang elements to discretise the bending moments in the space of symmetric square integrable fields with a square integrable divergence MHZHsym(Div)\boldsymbol{M} \in \mathcal{HZ} \subset H^{\mathrm{sym}}(\mathrm{Div}). The latter results in highly accurate approximations of the bending moments M\boldsymbol{M} and in the rotation field being in the discontinuous Lebesgue space ϕ[L]2\boldsymbol{\phi} \in [L]^2, such that the Kirchhoff-Love constraint can be satisfied for t0t \to 0. In order to preserve optimal convergence rates across all variables for the case t0t \to 0, we present an extension of the formulation using Raviart-Thomas elements for the shear stress qRTH(div)\mathbf{q} \in \mathcal{RT} \subset H(\mathrm{div}). We prove existence and uniqueness in the continuous setting and rely on exact complexes for inheritance of well-posedness in the discrete setting. This work introduces an efficient construction of the Hu-Zhang base functions on the reference element via the polytopal template methodology and Legendre polynomials, making it applicable to hp-FEM. The base functions on the reference element are then mapped to the physical element using novel polytopal transformations, which are suitable also for curved geometries. The robustness of the formulations and the construction of the Hu-Zhang element are tested for shear-locking, curved geometries and an L-shaped domain with a singularity in the bending moments M\boldsymbol{M}. Further, we compare the performance of the novel formulations with the primal-, MITC- and recently introduced TDNNS methods.Comment: Additional implementation material in: https://github.com/Askys/NGSolve_HuZhang_Elemen

    Imposing Dirichlet boundary conditions in hierarchical Cartesian meshes by means of stabilized Lagrange multipliers

    Full text link
    This is the pre-peer reviewed version of the following article: Tur, M., Albelda, J., Nadal, E. and Ródenas, J. J. (2014), Imposing Dirichlet boundary conditions in hierarchical Cartesian meshes by means of stabilized Lagrange multipliers. Int. J. Numer. Meth. Engng, 98: 399–417, which has been published in final form at http://dx.doi.org/10.1002/nme.4629 . This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] The use of Cartesian meshes independent of the geometry has some advantages over the traditional meshes used in the finite element method. The main advantage is that their use together with an appropriate hierarchical data structure reduces the computational cost of the finite element analysis. This improvement is based on the substitution of the traditional mesh generation process by an optimized procedure for intersecting the Cartesian mesh with the boundary of the domain and the use efficient solvers based on the hierarchical data structure. One major difficulty associated to the use of Cartesian grids is the fact that the mesh nodes do not, in general, lie over the boundary of the domain, increasing the difficulty to impose Dirichlet boundary conditions. In this paper, Dirichlet boundary conditions are imposed by means of the Lagrange multipliers technique. A new functional has been added to the initial formulation of the problem that has the effect of stabilizing the problem. The technique here presented allows for a simple definition of the Lagrange multipliers field that even allow us to directly condense the degrees of freedom of the Lagrange multipliers at element level.The authors acknowledge the financial support received from the research project DPI2010-20542 of the Ministerio de Economia y Competitividad. Also, we appreciated the financial support of the FPU program (AP2008-01086) of the Universitat Politecnica de Valencia and the Generalitat Valenciana (PROMETEO/2012/023). The authors are also grateful for the support of the Framework Program 7 Initial Training Network Funding under grant number 289361 'Integrating Numerical Simulation and Geometric Design Technology (INSIST)'.Tur Valiente, M.; Albelda Vitoria, J.; Nadal Soriano, E.; Ródenas García, JJ. (2014). Imposing Dirichlet boundary conditions in hierarchical Cartesian meshes by means of stabilized Lagrange multipliers. International Journal for Numerical Methods in Engineering. 98(6):399-417. https://doi.org/10.1002/nme.462939941798

    Robust multigrid methods for Isogeometric discretizations applied to poroelasticity problems

    Get PDF
    El análisis isogeométrico (IGA) elimina la barrera existente entre elementos finitos (FEA) y el diseño geométrico asistido por ordenador (CAD). Debido a esto, IGA es un método novedoso que está recibiendo una creciente atención en la literatura y recientemente se ha convertido en tendencia. Muchos esfuerzos están siendo puestos en el diseño de solvers eficientes y robustos para este tipo de discretizaciones. Dada la optimalidad de los métodos multimalla para elementos finitos, la aplicación de estosmétodos a discretizaciones isogeométricas no ha pasado desapercibida. Nosotros pensamos firmemente que los métodos multimalla son unos candidatos muy prometedores a ser solvers eficientes y robustos para IGA y por lo tanto en esta tesis apostamos por su aplicación. Para contar con un análisis teórico para el diseño de nuestros métodos multimalla, el análisis local de Fourier es propuesto como principal análisis cuantitativo. En esta tesis, a parte de considerar varios problemas escalares, prestamos especial atención al problema de poroelasticidad, concretamente al modelo cuasiestático de Biot para el proceso de consolidación del suelo. Actualmente, el diseño de métodos multimalla robustos para problemas poroelásticos respecto a parámetros físicos o el tamaño de la malla es un gran reto. Por ello, la principal contribución de esta tesis es la propuesta de métodos multimalla robustos para discretizaciones isogeométricas aplicadas al problema de poroelasticidad.La primera parte de esta tesis se centra en la construcción paramétrica de curvas y superficies dado que estas técnicas son la base de IGA. Así, la definición de los polinomios de Bernstein y curvas de Bézier se presenta como punto de partida. Después, introducimos los llamados B-splines y B-splines racionales no uniformes (NURBS) puesto que éstas serán las funciones base consideradas en nuestro estudio.La segunda parte trata sobre el análisis isogeométrico propiamente dicho. En esta parte, el método isoparamétrico es explicado al lector y se presenta el análisis isogeométrico de algunos problemas. Además, introducimos la formulación fuerte y débil de los problemas anteriores mediante el método de Galerkin y los espacios de aproximación isogeométricos. El siguiente punto de esta tesis se centra en los métodos multimalla. Se tratan las bases de los métodos multimalla y, además de introducir algunos métodos iterativos clásicos como suavizadores, también se introducen suavizadores por bloques como los métodos de Schwarz multiplicativos y aditivos. Llegados a esta parte, nos centramos en el LFA para el diseño de métodos multimalla robustos y eficientes. Además, se explican en detalle el análisis estándar y el análisis basado en ventanas junto al análisis de suavizadores por bloques y el análisis para sistemas de ecuaciones en derivadas parciales.Tras introducir las discretizaciones isogeométricas, los métodos multimalla y el LFA como análisis teórico, nuestro propósito es diseñar métodos multimalla eficientes y robustos respecto al grado polinomial de los splines para discretizaciones isogeométricas de algunos problemas escalares. Así, mostramos que el uso de métodos multimalla basados en suavizadores de tipo Schwarz multiplicativo o aditivo produce buenos resultados y factores de convergencia asintóticos robustos. La última parte de esta tesis está dedicada al análisis isogeométrico del problema de poroelasticidad. Para esta tarea, se introducen el modelo de Biot y su discretización isogeométrica. Además, presentamos una novedosa estabilización de masa para la formulación de dos campos de las ecuaciones de Biot que elimina todas las oscilaciones no físicas en la aproximación numérica de la presión. Después, nos centramos en dos tipos de solvers para estas ecuaciones poroelásticas: Solvers desacoplados y solvers monolíticos. En el primer grupo, le dedicamos una especial atención al método fixed-stress y a un método iterativo propuesto por nosotros que puede ser aplicado de forma automática a partir de la estabilización de masa ya mencionada.Por otro lado, realizamos un análisis de von Neumann para este método iterativo aplicado al problema de Terzaghi y demostramos su estabilidad y convergencia para los pares de elementos Q1 Q1, Q2 Q1 y Q3 Q2 (con suavidad global C1). Respecto al grupo de solvers monolíticos, nosotros proponemos métodos multimalla basados en suavizadores acoplados y desacoplados. En esta parte, métodosIsogeometric analysis (IGA) eliminates the gap between finite element analysis (FEA) and computer aided design (CAD). Due to this, IGA is an innovative approach that is receiving an increasing attention in the literature and it has recently become a trending topic. Many research efforts are being devoted to the design of efficient and robust solvers for this type of discretization. Given the optimality of multigrid methods for FEA, the application of these methods to IGA discretizations has not been unnoticed. We firmly think that they are a very promising approach as efficient and robust solvers for IGA and therefore in this thesis we are concerned about their application. In order to give a theoretical support to the design of multigrid solvers, local Fourier analysis (LFA) is proposed as the main quantitative analysis. Although different scalar problems are also considered along this thesis, we make a special focus on poroelasticity problems. More concretely, we focus on the quasi-static Biot's equations for the soil consolidation process. Nowadays, it is a very challenging task to achieve robust multigrid solvers for poroelasticity problems with respect physical parameters and/or the mesh size. Thus, the main contribution of this thesis is to propose robust multigrid methods for isogeometric discretizations applied to poroelasticity problems. The first part of this thesis is devoted to the introduction of the parametric construction of curves and surfaces since these techniques are the basis of IGA. Hence, with the definition of Bernstein polynomials and B\'ezier curves as a starting point, we introduce B-splines and non-uniform rational B-splines (NURBS) since these will be the basis functions considered for our numerical experiments. The second part deals with the isogeometric analysis. In this part, the isoparametric approach is explained to the reader and the isogeometric analysis of some scalar problems is presented. Hence, the strong and weak formulations by means of Galerkin's method are introduced and the isogeometric approximation spaces as well. The next point of this thesis consists of multigrid methods. The basics of multigrid methods are explained and, besides the presentation of some classical iterative methods as smoothers, block-wise smoothers such as multiplicative and additive Schwarz methods are also introduced. At this point, we introduce LFA for the design of efficient and robust multigrid methods. Furthermore, both standard and infinite subgrids local Fourier analysis are explained in detail together with the analysis for block-wise smoothers and the analysis for systems of partial differential equations. After the introduction of isogeometric discretizations, multigrid methods as our choice of solvers and LFA as theoretical analysis, our goal is to design efficient and robust multigrid methods with respect to the spline degree for IGA discretizations of some scalar problems. Hence, we show that the use of multigrid methods based on multiplicative or additive Schwarz methods provide a good performance and robust asymptotic convergence rates. The last part of this thesis is devoted to the isogeometric analysis of poroelasticity. For this task, Biot's model and its isogeometric discretization are introduced. Moreover, we present an innovative mass stabilization of the two-field formulation of Biot's equations that eliminates all the spurious oscillations in the numerical approximation of the pressure. Then, we deal with two types of solvers for these poroelastic equations: Decoupled and monolithic solvers. In the first group we devote special attention to the fixed-stress split method and a mass stabilized iterative scheme proposed by us that can be automatically applied from the mass stabilization formulation mentioned before. In addition, we perform a von Neumann analysis for this iterative decoupled solver applied to Terzaghi's problem and demonstrate that it is stable and convergent for pairs Q1-Q1, Q2-Q1 and Q3-Q2 (with global smoothness C1). Regarding the group of monolithic solvers, we propose multigrid methods based on coupled and decoupled smoothers. Coupled additive Schwarz methods are proposed as coupled smoothers for isogeometric Taylor-Hood elements. More concretely, we propose a 51-point additive Schwarz method for the pair Q2-Q1. In the last part, we also propose to use an inexact version of the fixed-stress split algorithm as decoupled smoother by applying iterations of different additive Schwarz methods for each variable. For the latter approach, we consider the pairs of elements Q2-Q1 and Q3-Q2 (with global smoothness C1). Finally, thanks to LFA we manage to design efficient and robust multigrid solvers for the Biot's equations and some numerical results are shown.<br /

    A Reissner-Mindlin plate formulation using symmetric Hu-Zhang elements via polytopal transformations

    Get PDF
    In this work we develop new finite element discretisations of the shear-deformable Reissner--Mindlin plate problem based on the Hellinger-Reissner principle of symmetric stresses. Specifically, we use conforming Hu-Zhang elements to discretise the bending moments in the space of symmetric square integrable fields with a square integrable divergence. The latter results in highly accurate approximations of the bending moments M and in the rotation field being in the discontinuous Lebesgue space , such that the Kirchhoff-Love constraint can be satisfied for t tending to zero. In order to preserve optimal convergence rates across all variables for the case t tending to zero, we present an extension of the formulation using Raviart-Thomas elements for the shear stress. We prove existence and uniqueness in the continuous setting and rely on exact complexes for inheritance of well-posedness in the discrete setting. This work introduces an efficient construction of the Hu-Zhang base functions on the reference element via the polytopal template methodology and Legendre polynomials, making it applicable to hp-FEM. The base functions on the reference element are then mapped to the physical element using novel polytopal transformations, which are suitable also for curved geometries. The robustness of the formulations and the construction of the Hu-Zhang element are tested for shear-locking, curved geometries and an L-shaped domain with a singularity in the bending moments. Further, we compare the performance of the novel formulations with the primal-, MITC- and recently introduced TDNNS methods.Pre-prin

    Recovered finite element methods on polygonal and polyhedral meshes

    Get PDF
    Recovered Finite Element Methods (R-FEM) have been recently introduced in Georgoulis and Pryer [Comput. Methods Appl. Mech. Eng. 332 (2018) 303–324]. for meshes consisting of simplicial and/or box-type elements. Here, utilising the flexibility of the R-FEM framework, we extend their definition to polygonal and polyhedral meshes in two and three spatial dimensions, respectively. An attractive feature of this framework is its ability to produce arbitrary order polynomial conforming discretizations, yet involving only as many degrees of freedom as discontinuous Galerkin methods over general polygonal/polyhedral meshes with potentially many faces per element. A priori error bounds are shown for general linear, possibly degenerate, second order advection-diffusion-reaction boundary value problems. A series of numerical experiments highlight the good practical performance of the proposed numerical framework

    Fast Numerical Methods for Non-local Operators

    Get PDF
    [no abstract available

    Fast numerical methods for non-local operators

    Full text link
    corecore