703,405 research outputs found

    Glass transition in granular media

    Full text link
    In the framework of schematic hard spheres lattice models for granular media we investigate the phenomenon of the ``jamming transition''. In particular, using Edwards' approach, by analytical calculations at a mean field level, we derive the system phase diagram and show that ``jamming'' corresponds to a phase transition from a ``fluid'' to a ``glassy'' phase, observed when crystallization is avoided. Interestingly, the nature of such a ``glassy'' phase turns out to be the same found in mean field models for glass formers.Comment: 7 pages, 4 figure

    Vortex Glass and Vortex Liquid in Oscillatory Media

    Get PDF
    We study the disordered, multi-spiral solutions of two-dimensional homogeneous oscillatory media for parameter values at which the single spiral/vortex solution is fully stable. In the framework of the complex Ginzburg-Landau (CGLE) equation, we show that these states, heretofore believed to be static, actually evolve on ultra-slow timescales. This is achieved via a reduction of the CGLE to the evolution of the sole vortex position and phase coordinates. This true defect-mediated turbulence occurs in two distinct phases, a vortex liquid characterized by normal diffusion of individual spirals, and a slowly relaxing, intermittent, ``vortex glass''.Comment: 4 pages, 2 figures, submitted to Physical Review Letter

    Development of a theory of the spectral reflectance of minerals, part 2

    Get PDF
    Theory of diffuse reflectance of particulate media including garnet, glass, corundum powders, and mixture

    Raising Women's Pay: An Agenda For Equity

    Get PDF
    An agenda and series of recommendations that offer concrete solutions to the problems of unequal pay, occupational segregation, glass ceiling discrimination, and low-wage and temporary work.More reports like this one are available on WE's website under Media Center > Publications > Making Workplaces Fairer

    Jamming transition in granular media: A mean field approximation and numerical simulations

    Full text link
    In order to study analytically the nature of the jamming transition in granular material, we have considered a cavity method mean field theory, in the framework of a statistical mechanics approach, based on Edwards' original idea. For simplicity we have applied the theory to a lattice model and a transition with exactly the same nature of the glass transition in mean field models for usual glass formers is found. The model is also simulated in three dimensions under tap dynamics and a jamming transition with glassy features is observed. In particular two step decays appear in the relaxation functions and dynamic heterogeneities resembling ones usually observed in glassy systems. These results confirm early speculations about the connection between the jamming transition in granular media and the glass transition in usual glass formers, giving moreover a precise interpretation of its nature.Comment: 11 pages, 12 figure

    Glassy dynamics and dynamical heterogeneity in colloids

    Full text link
    Concentrated colloidal suspensions are a well-tested model system which has a glass transition. Colloids are suspensions of small solid particles in a liquid, and exhibit glassy behavior when the particle concentration is high; the particles are roughly analogous to individual molecules in a traditional glass. Because the particle size can be large (100 nm - 1000 nm), these samples can be studied with a variety of optical techniques including microscopy and dynamic light scattering. Here we review the phenomena associated with the colloidal glass transition, and in particular discuss observations of spatial and temporally heterogeneous dynamics within colloidal samples near the glass transition. Although this Chapter focuses primarily on results from hard-sphere-like colloidal particles, we also discuss other colloidal systems with attractive or soft repulsive interactions.Comment: Chapter of "Dynamical heterogeneities in glasses, colloids, and granular media", Eds.: L. Berthier, G. Biroli, J-P Bouchaud, L. Cipelletti and W. van Saarloos (Oxford University Press, to appear), more info at http://w3.lcvn.univ-montp2.fr/~lucacip/DH_book.ht
    • …
    corecore