161,164 research outputs found

    Developing a comprehensive framework for multimodal feature extraction

    Full text link
    Feature extraction is a critical component of many applied data science workflows. In recent years, rapid advances in artificial intelligence and machine learning have led to an explosion of feature extraction tools and services that allow data scientists to cheaply and effectively annotate their data along a vast array of dimensions---ranging from detecting faces in images to analyzing the sentiment expressed in coherent text. Unfortunately, the proliferation of powerful feature extraction services has been mirrored by a corresponding expansion in the number of distinct interfaces to feature extraction services. In a world where nearly every new service has its own API, documentation, and/or client library, data scientists who need to combine diverse features obtained from multiple sources are often forced to write and maintain ever more elaborate feature extraction pipelines. To address this challenge, we introduce a new open-source framework for comprehensive multimodal feature extraction. Pliers is an open-source Python package that supports standardized annotation of diverse data types (video, images, audio, and text), and is expressly with both ease-of-use and extensibility in mind. Users can apply a wide range of pre-existing feature extraction tools to their data in just a few lines of Python code, and can also easily add their own custom extractors by writing modular classes. A graph-based API enables rapid development of complex feature extraction pipelines that output results in a single, standardized format. We describe the package's architecture, detail its major advantages over previous feature extraction toolboxes, and use a sample application to a large functional MRI dataset to illustrate how pliers can significantly reduce the time and effort required to construct sophisticated feature extraction workflows while increasing code clarity and maintainability

    Nonparametric Feature Extraction from Dendrograms

    Full text link
    We propose feature extraction from dendrograms in a nonparametric way. The Minimax distance measures correspond to building a dendrogram with single linkage criterion, with defining specific forms of a level function and a distance function over that. Therefore, we extend this method to arbitrary dendrograms. We develop a generalized framework wherein different distance measures can be inferred from different types of dendrograms, level functions and distance functions. Via an appropriate embedding, we compute a vector-based representation of the inferred distances, in order to enable many numerical machine learning algorithms to employ such distances. Then, to address the model selection problem, we study the aggregation of different dendrogram-based distances respectively in solution space and in representation space in the spirit of deep representations. In the first approach, for example for the clustering problem, we build a graph with positive and negative edge weights according to the consistency of the clustering labels of different objects among different solutions, in the context of ensemble methods. Then, we use an efficient variant of correlation clustering to produce the final clusters. In the second approach, we investigate the sequential combination of different distances and features sequentially in the spirit of multi-layered architectures to obtain the final features. Finally, we demonstrate the effectiveness of our approach via several numerical studies

    Feature Extraction and Classification of Automatically Segmented Lung Lesion Using Improved Toboggan Algorithm

    Full text link
    The accurate detection of lung lesions from computed tomography (CT) scans is essential for clinical diagnosis. It provides valuable information for treatment of lung cancer. However, the process is exigent to achieve a fully automatic lesion detection. Here, a novel segmentation algorithm is proposed, it's an improved toboggan algorithm with a three-step framework, which includes automatic seed point selection, multi-constraints lesion extraction and the lesion refinement. Then, the features like local binary pattern (LBP), wavelet, contourlet, grey level co-occurence matrix (GLCM) are applied to each region of interest of the segmented lung lesion image to extract the texture features such as contrast, homogeneity, energy, entropy and statistical extraction like mean, variance, standard deviation, convolution of modulated and normal frequencies. Finally, support vector machine (SVM) and K-nearest neighbour (KNN) classifiers are applied to classify the abnormal region based on the performance of the extracted features and their performance is been compared. The accuracy of 97.8% is been obtained by using SVM classifier when compared to KNN classifier. This approach does not require any human interaction for lesion detection. Thus, the improved toboggan algorithm can achieve precise lung lesion segmentation in CT images. The features extracted also helps to classify the lesion region of lungs efficiently

    Video Feature Extraction Based on Modified LLE Using Adaptive Nearest Neighbor Approach

    Full text link
    Locally linear embedding (LLE) is an unsupervised learning algorithm which computes the low dimensional, neighborhood preserving embeddings of high dimensional data. LLE attempts to discover non-linear structure in high dimensional data by exploiting the local symmetries of linear reconstructions. In this paper, video feature extraction is done using modified LLE alongwith adaptive nearest neighbor approach to find the nearest neighbor and the connected components. The proposed feature extraction method is applied to a video. The video feature description gives a new tool for analysis of video

    Face Detection with Effective Feature Extraction

    Full text link
    There is an abundant literature on face detection due to its important role in many vision applications. Since Viola and Jones proposed the first real-time AdaBoost based face detector, Haar-like features have been adopted as the method of choice for frontal face detection. In this work, we show that simple features other than Haar-like features can also be applied for training an effective face detector. Since, single feature is not discriminative enough to separate faces from difficult non-faces, we further improve the generalization performance of our simple features by introducing feature co-occurrences. We demonstrate that our proposed features yield a performance improvement compared to Haar-like features. In addition, our findings indicate that features play a crucial role in the ability of the system to generalize.Comment: 7 pages. Conference version published in Asian Conf. Comp. Vision 201

    A new kernel method for hyperspectral image feature extraction

    Get PDF
    Hyperspectral image provides abundant spectral information for remote discrimination of subtle differences in ground covers. However, the increasing spectral dimensions, as well as the information redundancy, make the analysis and interpretation of hyperspectral images a challenge. Feature extraction is a very important step for hyperspectral image processing. Feature extraction methods aim at reducing the dimension of data, while preserving as much information as possible. Particularly, nonlinear feature extraction methods (e.g. kernel minimum noise fraction (KMNF) transformation) have been reported to benefit many applications of hyperspectral remote sensing, due to their good preservation of high-order structures of the original data. However, conventional KMNF or its extensions have some limitations on noise fraction estimation during the feature extraction, and this leads to poor performances for post-applications. This paper proposes a novel nonlinear feature extraction method for hyperspectral images. Instead of estimating noise fraction by the nearest neighborhood information (within a sliding window), the proposed method explores the use of image segmentation. The approach benefits both noise fraction estimation and information preservation, and enables a significant improvement for classification. Experimental results on two real hyperspectral images demonstrate the efficiency of the proposed method. Compared to conventional KMNF, the improvements of the method on two hyperspectral image classification are 8 and 11%. This nonlinear feature extraction method can be also applied to other disciplines where high-dimensional data analysis is required
    corecore