5 research outputs found

    Routing, Localization And Positioning Protocols For Wireless Sensor And Actor Networks

    Get PDF
    Wireless sensor and actor networks (WSANs) are distributed systems of sensor nodes and actors that are interconnected over the wireless medium. Sensor nodes collect information about the physical world and transmit the data to actors by using one-hop or multi-hop communications. Actors collect information from the sensor nodes, process the information, take decisions and react to the events. This dissertation presents contributions to the methods of routing, localization and positioning in WSANs for practical applications. We first propose a routing protocol with service differentiation for WSANs with stationary nodes. In this setting, we also adapt a sports ranking algorithm to dynamically prioritize the events in the environment depending on the collected data. We extend this routing protocol for an application, in which sensor nodes float in a river to gather observations and actors are deployed at accessible points on the coastline. We develop a method with locally acting adaptive overlay network formation to organize the network with actor areas and to collect data by using locality-preserving communication. We also present a multi-hop localization approach for enriching the information collected from the river with the estimated locations of mobile sensor nodes without using positioning adapters. As an extension to this application, we model the movements of sensor nodes by a subsurface meandering current mobility model with random surface motion. Then we adapt the introduced routing and network organization methods to model a complete primate monitoring system. A novel spatial cut-off preferential attachment model and iii center of mass concept are developed according to the characteristics of the primate groups. We also present a role determination algorithm for primates, which uses the collection of spatial-temporal relationships. We apply a similar approach to human social networks to tackle the problem of automatic generation and organization of social networks by analyzing and assessing interaction data. The introduced routing and localization protocols in this dissertation are also extended with a novel three dimensional actor positioning strategy inspired by the molecular geometry. Extensive simulations are conducted in OPNET simulation tool for the performance evaluation of the proposed protocol

    Decision-making for Vehicle Path Planning

    Get PDF
    This dissertation presents novel algorithms for vehicle path planning in scenarios where the environment changes. In these dynamic scenarios the path of the vehicle needs to adapt to changes in the real world. In these scenarios, higher performance paths can be achieved if we are able to predict the future state of the world, by learning the way it evolves from historical data. We are relying on recent advances in the field of deep learning and reinforcement learning to learn appropriate world models and path planning behaviors. There are many different practical applications that map to this model. In this dissertation we propose algorithms for two applications that are very different in domain but share important formal similarities: the scheduling of taxi services in a large city and tracking wild animals with an unmanned aerial vehicle. The first application models a centralized taxi dispatch center in a big city. It is a multivariate optimization problem for taxi time scheduling and path planning. The first goal here is to balance the taxi service demand and supply ratio in the city. The second goal is to minimize passenger waiting time and taxi idle driving distance. We design different learning models that capture taxi demand and destination distribution patterns from historical taxi data. The predictions are evaluated with real-world taxi trip records. The predicted taxi demand and destination is used to build a taxi dispatch model. The taxi assignment and re-balance is optimized by solving a Mixed Integer Programming (MIP) problem. The second application concerns animal monitoring using an unmanned aerial vehicle (UAV) to search and track wild animals in a large geographic area. We propose two different path planing approaches for the UAV. The first one is based on the UAV controller solving Markov decision process (MDP). The second algorithms relies on the past recorded animal appearances. We designed a learning model that captures animal appearance patterns and predicts the distribution of future animal appearances. We compare the proposed path planning approaches with traditional methods and evaluated them in terms of collected value of information (VoI), message delay and percentage of events collected

    Fapebook - Animal Social Life Monitoring With Wireless Sensor And Actor Networks

    No full text
    Wild life monitoring requires a sophisticated process of planning, installation, execution, data collection, and data interpretation. The effort and time spent increases tremendously with the area and the number of observed objects as well as with the time frame of the observations. However, the application of wireless sensor nodes enables a scalable sampling method and fine granularity of data difficult to obtain otherwise. By including resource rich actor nodes, the data collection and evaluation are further optimized. In this paper, a wireless sensor and actor network (WSAN) protocol is designed for capturing and monitoring the social interactions of the complex social network of gorillas. The nodes are intended to be attached on the apes forming a mobile network. The local interaction patterns among the nodes are analyzed throughout the network life time. The protocol then determines the social roles of the gorillas based on previous research findings about their social structure, and builds a profile for each ape, which demonstrates the status, kinship and role played within the society. As a result, the proposed protocol generates a social directory of the ape troop under observation, namely fAPEbook. The contribution of this paper is to evaluate the efficiency of the proposed algorithm by its ability to capture the different characteristics in the society with the established mobility models. The results suggest the applicability of the algorithm in field tests with wild life. © 2011 IEEE
    corecore