66,969 research outputs found

    Great metalloclusters in enzymology

    Get PDF
    Metallocluster-containing enzymes catalyze some of the most basic redox transformations in the biosphere. The reactions catalyzed by these enzymes typically involve small molecules such as N2, CO, and H2 that are used to generate both chemical building blocks and energy for metabolic purposes. During the past decade, structures have been established for the iron-sulfur-based metalloclusters present in the molybdenum nitrogenase, the iron-only hydrogenase, and the nickel-carbon monoxide dehydrogenase, and for the copper-sulfide-based cluster in nitrous oxide reductase. Although these clusters are built from interactions observed in simpler metalloproteins, they contain novel features that may be relevant for their catalytic function. The mechanisms of metallocluster-containing enzymes are still poorly defined, and represent substantial and continuing challenges to biochemists, biophysicists, and synthetic chemists. These proteins also provide a window into the union of the biological and inorganic worlds that may have been relevant to the early evolution of biochemical catalysis

    Internal Motility in Stiffening Actin-Myosin Networks

    Full text link
    We present a study on filamentous actin solutions containing heavy meromyosin subfragments of myosin II motor molecules. We focus on the viscoelastic phase behavior and internal dynamics of such networks during ATP depletion. Upon simultaneously using micro-rheology and fluorescence microscopy as complementary experimental tools, we find a sol-gel transition accompanied by a sudden onset of directed filament motion. We interpret the sol-gel transition in terms of myosin II enzymology, and suggest a "zipping" mechanism to explain the filament motion in the vicinity of the sol-gel transition.Comment: 4 pages, 3 figure

    EPR Methods for Biological Cu(II): L-Band CW and NARS

    Get PDF
    Abstract: Copper has many roles in biology that involve the change of coordination sphere and/or oxidation state of the copper ion. Consequently, the study of copper in heterogeneous environments is an important area in biophysics. EPR is a primary technique for the investigation of paramagnetic copper, which is usually the isolated Cu(II) ion, but sometimes as Cu(II) in different oxidation states of multitransition ion clusters. The gross geometry of the coordination environment of Cu(II) can often be determined from a simple inspection of the EPR spectrum, recorded in the traditional X-band frequency range (9–10 GHz). Identification and quantitation of the coordinating ligand atoms, however, is not so straightforward. In particular, analysis of the superhyperfine structure on the EPR spectrum, to determine the number of coordinated nitrogen atoms, is fraught with difficulty at X-band, despite the observation that the overwhelming number of EPR studies of Cu(II) in the literature have been carried out at X-band. Greater reliability has been demonstrated at S-band (3–4 GHz), using the low-field parallel (gz) features. However, analysis relies on clear identification of the outermost superhyperfine line, which has the lowest intensity of all the spectral features. Computer simulations have subsequently indicated that the much more intense perpendicular region of the spectrum can be reliably interpreted at L-band (2 GHz). The present work describes the development of L-band EPR of Cu(II) into a routine method that is applicable to biological samples

    Dynamic disorder in simple enzymatic reactions induces stochastic amplification of substrate

    Get PDF
    A growing amount of evidence points to the fact that many enzymes exhibit fluctuations in their catalytic activity, which are associated with conformational changes on a broad range of timescales. The experimental study of this phenomenon, termed dynamic disorder, has become possible due to advances in single-molecule enzymology measurement techniques, through which the catalytic activity of individual enzyme molecules can be tracked in time. The biological role and importance of these fluctuations in a system with a small number of enzymes such as a living cell have only recently started being explored. In this work, we examine a simple stochastic reaction system consisting of an inflowing substrate and an enzyme with a randomly fluctuating catalytic reaction rate that converts the substrate into an outflowing product. To describe analytically the effect of rate fluctuations on the average substrate abundance at steady-state, we derive an explicit formula that connects the relative speed of enzymatic fluctuations with the mean substrate level. We demonstrate that the relative speed of rate fluctuations can have a dramatic effect on the mean substrate, and lead to large positive deviations from predictions based on the assumption of deterministic enzyme activity. Our results also establish an interesting connection between the amplification effect and the mixing properties of the Markov process describing the enzymatic activity fluctuations, which can be used to easily predict the fluctuation speed above which such deviations become negligible. As the techniques of single-molecule enzymology continuously evolve, it may soon be possible to study the stochastic phenomena due to enzymatic activity fluctuations within living cells. Our work can be used to formulate experimentally testable hypotheses regarding the magnitude of these fluctuations, as well as their phenotypic consequences.Comment: 7 Figure

    In silico enzyme modelling

    Get PDF
    The 2013 Nobel Prize in Chemistry went to Martin Karplus, Michael Levitt and Arieh Warshel for their pioneering work on computer modelling, specifically, the \u27development of multiscale models of complex chemical systems\u27 (1). This award not only recognises the critical contributions by the three laureates to the field of molecular simulations, but also underscores the broad impact that computer simulations have made in fields as diverse as chemistry, biophysics, enzymology and material sciences. This review will present an overview of computational enzymology, a rapidly maturing field where multiscale modelling plays a key role in deciphering enzymatic catalysis (2-4)

    Lessons from LIMK1 enzymology and their impact on inhibitor design

    Get PDF
    LIM domain kinase 1 (LIMK1) is a key regulator of actin dynamics. It is thereby a potential therapeutic target for the prevention of fragile X syndrome and amyotrophic lateral sclerosis. Herein, we use X-ray crystallography and activity assays to describe how LIMK1 accomplishes substrate specificity, to suggest a unique ‘rock-and-poke’ mechanism of catalysis and to explore the regulation of the kinase by activation loop phosphorylation. Based on these findings, a differential scanning fluorimetry assay and a RapidFire mass spectrometry activity assay were established, leading to the discovery and confirmation of a set of small-molecule LIMK1 inhibitors. Interestingly, several of the inhibitors were inactive towards the closely related isoform LIMK2. Finally, crystal structures of the LIMK1 kinase domain in complex with inhibitors (PF-477736 and staurosporine, respectively) are presented, providing insights into LIMK1 plasticity upon inhibitor binding

    USSR Space Life Sciences Digest, issue 31

    Get PDF
    This is the thirty first issue of NASA's Space Life Sciences Digest. It contains abstracts of 55 journal papers or book chapters published in Russian and of 5 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 18 areas of space biology and medicine. These areas include: adaptation, biological rhythms, cardiovascular and respiratory systems, endocrinology, enzymology, genetics, group dynamics, habitability and environmental effects, hematology, life support systems, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, psychology, radiobiology, and space biology and medicine
    corecore