107,614 research outputs found

    Models and measurements of energy-dependent quenching.

    Get PDF
    Energy-dependent quenching (qE) in photosystem II (PSII) is a pH-dependent response that enables plants to regulate light harvesting in response to rapid fluctuations in light intensity. In this review, we aim to provide a physical picture for understanding the interplay between the triggering of qE by a pH gradient across the thylakoid membrane and subsequent changes in PSII. We discuss how these changes alter the energy transfer network of chlorophyll in the grana membrane and allow it to switch between an unquenched and quenched state. Within this conceptual framework, we describe the biochemical and spectroscopic measurements and models that have been used to understand the mechanism of qE in plants with a focus on measurements of samples that perform qE in response to light. In addition, we address the outstanding questions and challenges in the field. One of the current challenges in gaining a full understanding of qE is the difficulty in simultaneously measuring both the photophysical mechanism of quenching and the physiological state of the thylakoid membrane. We suggest that new experimental and modeling efforts that can monitor the many processes that occur on multiple timescales and length scales will be important for elucidating the quantitative details of the mechanism of qE

    QCD Collisional Energy Loss in an Increasingly Interacting Quark Gluon Plasma

    Full text link
    The discovery of the jet quenching in central Au + Au collisions at the Relativistic Heavy-ion Collider (RHIC) at Brookhaven National Laboratory has provided clear evidence for the formation of strongly interacting dense matter. It has been predicted to occur due to the energy loss of high energy partons that propagate through the quark gluon plasma. In this paper we investigate the dependence of the parton energy loss due to elastic scatterings in a parton plasma on the value of the strong coupling and its running with the evolution of the system. We analyze different prescriptions for the QCD coupling and calculate the energy and length dependence of the fractional energy loss. Moreover, the partonic quenching factor for light and heavy quarks is estimated. We found that the predicted enhancement of the heavy to light hadrons (D/¤ÇD/\pi) ratio is strongly dependent on the running of the QCD coupling constant.Comment: 16 pages, 8 figures. Version to be published in the International Journal of Modern Physics

    Quenching Factor for Low Energy Nuclear Recoils in a Plastic Scintillator

    Get PDF
    Plastic scintillators are widely used in industry, medicine and scientific research, including nuclear and particle physics. Although one of their most common applications is in neutron detection, experimental data on their response to low-energy nuclear recoils are scarce. Here, the relative scintillation efficiency for neutron-induced nuclear recoils in a polystyrene-based plastic scintillator (UPS-923A) is presented, exploring recoil energies between 125 keV and 850 keV. Monte Carlo simulations, incorporating light collection efficiency and energy resolution effects, are used to generate neutron scattering spectra which are matched to observed distributions of scintillation signals to parameterise the energy-dependent quenching factor. At energies above 300 keV the dependence is reasonably described using the semi-empirical formulation of Birks and a kB factor of (0.014+/-0.002) g/MeVcm^2 has been determined. Below that energy the measured quenching factor falls more steeply than predicted by the Birks formalism.Comment: 8 pages, 9 figure

    Testing the theory of QGP-induced energy loss at RHIC and the LHC

    Full text link
    We compare an analytic model of jet quenching, based on the GLV non-Abelian energy loss formalism, to numerical results for the centrality dependent suppression of hadron cross sections in Au+Au and Cu+Cu collisions at RHIC. Simulations of neutral pion quenching versus the size of the colliding nuclear system are presented to high transverse momentum pT. At low and moderate pT, we study the contribution of medium-induced gluon bremsstrahlung to single inclusive hadron production. In Pb+Pb collisions at the LHC, the redistribution of the lost energy is shown to play a critical role in yielding nuclear suppression that does not violate the participant scaling limit.Comment: 9 pages, 7 figures, as published in Phys.Lett.B, (1 figure, 1 reference and discussion included

    Energy-dependent quenching adjusts the excitation diffusion length to regulate photosynthetic light harvesting

    Full text link
    An important determinant of crop yields is the regulation of photosystem II (PSII) light harvesting by energy-dependent quenching (qE). However, the molecular details of excitation quenching have not been quantitatively connected to the PSII yield, which only emerges on the 100 nm scale of the grana membrane and determines flux to downstream metabolism. Here, we incorporate excitation dissipation by qE into a pigment-scale model of excitation transfer and trapping for a 200 nm x 200 nm patch of the grana membrane. We demonstrate that single molecule measurements of qE are consistent with a weak-quenching regime. Consequently, excitation transport can be rigorously coarse-grained to a 2D random walk with an excitation diffusion length determined by the extent of quenching. A diffusion-corrected lake model substantially improves the PSII yield determined from variable chlorophyll fluorescence measurements and offers an improved model of PSII for photosynthetic metabolism.Comment: 19 pages, 4 figures, 3 supplementary figure

    Long Range Magnetic Order and the Darwin Lagrangian

    Full text link
    We simulate a finite system of NN confined electrons with inclusion of the Darwin magnetic interaction in two- and three-dimensions. The lowest energy states are located using the steepest descent quenching adapted for velocity dependent potentials. Below a critical density the ground state is a static Wigner lattice. For supercritical density the ground state has a non-zero kinetic energy. The critical density decreases with NN for exponential confinement but not for harmonic confinement. The lowest energy state also depends on the confinement and dimension: an antiferromagnetic cluster forms for harmonic confinement in two dimensions.Comment: 5 figure

    Reconstruction of the Free Energy in the Metastable Region using the Path Ensemble

    Full text link
    By quenching into the metastable region of the three-dimensional Ising model, we investigate the paths that the magnetization (energy) takes as a function of time. We accumulate the magnetization (energy) paths into time-dependent distributions from which we reconstruct the free energy as a function of the magnetic field, temperature and system size. From the reconstructed free energy, we obtain the free energy barrier that is associated with the transition from a metastable state to the stable equilibrium state. Although mean-field theory predicts a sharp transition between the metastable and the unstable region where the free energy barrier is zero, the results for the nearest-neighbour Ising model show that the free energy barrier does not go zero
    • ÔÇŽ
    corecore