22,900 research outputs found

    Distribution of Fishes in Reference Streams Within Arkansas\u27 Ecoregions

    Get PDF
    The State of Arkansas has been subdivided into six ecoregions based on the homogeneity of land surface forms, potential natural vegetation, soil types and land uses. Reference streams of various sizes, excluding the large rivers, and with the least amount of point source and non-point source disturbances were selected for intensive physical, chemical and biological sampling. These data are to be used to characterize the streams and establish water quality criteria which will protect all stream uses. Fish communities of the reference streams were distinctively different among the ecoregions and can easily be used to characterize the waters of different ecoregions. Although composed of different species, the composition of trophic feeding levels of the fish community was very similar among the ecoregions. The average number of species collected per sample site was similar among the ecoregions; however, the Arkansas River Valley and the Gulf Coastal ecoregions had the greatest species richness and the Delta ecoregion was the lowest in species richness. Species of fish sensitive to environmental change comprised near 50% or more of the community relative abundance in the Boston Mountains, Ozark Highlands and Ouachita Mountains ecoregions. Delta ecoregion fish populations contained less than 1% sensitive species. Comparisons of the ten most abundant species from each ecoregion by use of a similarity index shows very little similarity among the ecoregions. The Ouachita Mountains and Boston Mountains communities were most similar and the Ozark Highlands community versus Delta and Ozark Highlands versus Gulf Coastal were least similar

    Changes in Species Richness and Composition of Tiger Moths (Lepidoptera: Erebidae: Arctiinae) among Three Neotropical Ecoregions

    Get PDF
    Paraná, Yungas and Chaco Serrano ecoregions are among the most species-richterrestrial habitats at higher latitude. However, the information for tiger moths, one of the most speciose group of moths, is unknown in these ecoregion. In this study, we assess the species richness and composition on these three ecoregion. Also we investigated whether tiger moths species composition is influenced by climatic factors and altitude. Tiger moths species were obtained with samples from 71 sites using standardized protocols (21 sites were in Yungas, 19 in Paraná and 31 in Chaco Serrano). Rarefaction-extrapolation curves, non-parametric estimators for incidence and sample coverage indices were performed to assess species richness in the ecoregions studied. Non metric multidimensional scaling and adonis test were performed to compare the species composition of tiger moths among ecoregions. Permutest analysis and Pearson correlation were used to evaluate the relationship among species composition and annual mean temperature, annual temperature range, annual precipitation, precipitation seasonality and altitude. Among ecoregions Paraná was the richest with 125 species, followed by Yungas with 63 species and Chaco Serrano with 24 species. Species composition differed among these ecoregions, although Yungas and Chaco Serrano were more similar than Paraná. Species composition was significantly influenced by climatic factors and altitude. This study showed that species richness and species composition of tiger moths differed among the three ecoregions assessed. Furthermore, not only climatic factors and altitude influence the species composition of tiger moths among ecoregions, but also climatic seasonality at higher latitude in Neotropical South America region becomes an important factor.Fil: Beccacece, Hernán Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; ArgentinaFil: Zeballos, Sebastián Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Zapata, Adriana Inés. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Cátedra de Diversidad Animal I; Argentin

    Ichthyological ecoregions of Argentina

    Get PDF
    The Argentine Republic is situated in the southernmost portion of the American continent, occupying over 2,785,600 km2 not including the Antarctic territory. The country ranges from subtropical areas (21º46’S) to subantarctic regions (55º03’S), extending latitudinally over about 4,000 km. It possesses significant latitudinal and altitudinal variation (33º of latitudinal range, and heights from Bajo de San Julián in Santa Cruz province at 105 m below sea level, up to Mt. Aconcagua, 6,959 m over sea level), as well as two gradients of physical variability, extending in north-south and east-west directions. Owing to these features, the country presents a wide range of climates and soil types, being one of the countries with greatest diversity of biogeographical units (Lean et al., 1990, In: Bertonatti & Corcuera, 2000). There are four main hydrographic systems: Río de la Plata basin, the Atlantic and Pacific drainages, and several endorrheic systems. Within these basins, the ichthyofaunistic assemblage is well represented, with different magnitude in accordance with the different taxonomic groupings and regions considered. From an ichthyogeographic standpoint, and according to the works of Ringuelet (1975) and Arratia et al. (1983), Argentina is included in the Brasilic and Austral Subregions. The first of these is represented by two domains: the Andean Domain, comprising the southernmost portion of Titicaca Province, and the Paranensean Domain, including part of Alto Paraná and Paranoplatensean Provinces. The Austral Subregion is represented in Argentina by the Subandean-Cuyan and Patagonian Provinces. The present survey indicates that there are about 441 fish species in Argentina, distributed throughout the country; this number represents less than 10% of the total fish species occurring in the Neotropical Region. There is a recognizable trend of faunal impoverishment, both in North-South and East-West direction, reaching its maximum expression in the provinces of Tierra del Fuego (situated at approximately 52º30’S to 55ºS, and 65ºS to 68º50’W) and San Juan (approximately 28º50’S and 67ºW to 70º45’W), which have 4 and 5 fish species respectively. In north-south direction, one of the regional indicators of this phenomenon is the Salado river basin in Buenos Aires province, which constitutes the southern distributional boundary for the majority of the paranoplatensean ichthyofauna; 12 of the families occurring in the Paraná-Plata system are absent from this pauperized paranensean ichthyofaunal assemblage. Most of the continental fish fauna of Argentina belongs to the primary division of Myers (1949), while some elements are included in the secondary division and others in an amphibiotic or ‘marine penetration’ category. This ichthyofaunistic scope encompasses a wide range of morphological, biological, ecological and ethological types (benthic and pelagic, migrating and sedentary, haematophagous or parasites, annual species, inhabitants of plains or heights, estivation-adapted, etc.) inhabiting different regions within the national territory

    Contribution of water-limited ecoregions to their own supply of rainfall

    Get PDF
    The occurrence of wet and dry growing seasons in water-limited regions remains poorly understood, partly due to the complex role that these regions play in the genesis of their own rainfall. This limits the predictability of global carbon and water budgets, and hinders the regional management of naturalresources. Using novel satellite observations and atmospheric trajectory modelling, we unravel the origin and immediate drivers of growing-season precipitation, and the extent to which ecoregions themselves contribute to their own supply of rainfall. Results show that persistent anomalies in growing-season precipitation—and subsequent biomass anomalies—are caused by a complex interplay of land and ocean evaporation, air circulation and local atmospheric stability changes. For regions such as the Kalahari and Australia, the volumes of moisture recycling decline in dry years, providing a positive feedback that intensifies dry conditions. However, recycling ratios increase up to40%, pointing to the crucial role of these regions in generating their own supply of rainfall; transpiration in periods of water stress allows vegetation to partly offset the decrease in regional precipitation. Findings highlight the need to adequately represent vegetation–atmosphere feedbacks in models to predict biomass changes and to simulate the fate of water-limited regions in our warming climate

    Rural Land-Use Trends in the Conterminous United States, 1950-2000.

    Get PDF
    In order to understand the magnitude, direction, and geographic distribution of land-use changes, we evaluated land-use trends in U.S. counties during the latter half of the 20th century. Our paper synthesizes the dominant spatial and temporal trends in population, agriculture, and urbanized land uses, using a variety of data sources and an ecoregion classification as a frame of reference. A combination of increasing attractiveness of nonmetropolitan areas in the period 1970–2000, decreasing household size, and decreasing density of settlement has resulted in important trends in the patterns of developed land. By 2000, the area of low-density, exurban development beyond the urban fringe occupied nearly 15 times the area of higher density urbanized development. Efficiency gains, mechanization, and agglomeration of agricultural concerns has resulted in data that show cropland area to be stable throughout the Corn Belt and parts of the West between 1950 and 2000, but decreasing by about 22% east of the Mississippi River. We use a regional case study of the Mid-Atlantic and Southeastern regions to focus in more detail on the land-cover changes resulting from these dynamics. Dominating were land-cover changes associated with the timber practices in the forested plains ecoregions and urbanization in the piedmont ecoregions. Appalachian ecoregions show the slowest rates of landcover change. The dominant trends of tremendous exurban growth, throughout the United States, and conversion and abandonment of agricultural lands, especially in the eastern United States, have important implications because they affect large areas of the country, the functioning of ecological systems, and the potential for restoratio

    Frequency Distributions of Median Nutrient and Chlorophyll Concentrations across the Red River Basin, 1996-2006

    Get PDF
    Acquisition and compilation of water quality data for a ten year time period (1996 – 2006) from 589 stream and river stations was conducted to support nutrient criteria development for the multi–state Red River Basin shared by Arkansas, Louisiana, New Mexico, Oklahoma and Texas, USA. Twenty–three water quality parameters were collected from five data sources (USGS, ADEQ, LDEQ, OCC, OWRB, and TCEQ) and an additional 13 parameters were acquired from at least one source. Data for the primary biological parameter of interest, chlorophyll a, was sparse and available from only two sources. Following compilation of data, medians were calculated for the ten year period and median distributions (min, 10th, 25th, 50th, 75th, 90th percentiles and max) were presented for several different spatial scales including state specific data, HUC8 designated watersheds, and various ecoregions. Across this basin, median values for total nitrogen (TN), total phosphorus (TP), and sestonic chlorophyll–a (chl–a) ranged from \u3c0.02 to 20.2 mg L⁻¹, \u3c0.01 to 6.66 mg L⁻¹, and 0.10 to 26 µg L⁻¹, respectively. Overall, the 25th percentiles of median TN data specific to the Red River Basin were generally similar to the USEPA recommended eco–region nutrient criteria. Whereas, median TP and chl–a data specific to the Red River Basin showed 25th percentiles greater than the USEPA recommended criteria. The unique location of the Red River Basin in the south–central USA places it near the boundaries of several aggregate eco–regions; therefore, the development of eco–region nutrient criteria likely requires using data specific to the Red River Basin, as shown in these analyses. This study provided basin–specific distribution of medians as the first step supporting states in developing nutrient criteria to protect designated uses in the multi–jurisdictional Red River Basin and in potentially reducing nutrient export from the Red River Basin to the Gulf of Mexico

    Magnitud, composición y patrones espaciotemporales de la mortalidad de vertebrados en las carreteras a escala regional

    Get PDF
    Although roadkill studies on a large scale are challenging, they can provide valuable information to assess the impact of road traffic on animal populations. Over 22 months (between July 2009–June 2010, and April 2011–March 2012) we surveyed 45 road sections of 10 km within a global biodiversity hotspot in Andalusia (87,000 km2), in southern Spain. We divided the region into five ecoregions differing in environmental conditions and landscape characteristics and recorded the relative magnitude, composition and spatiotemporal patterns of vertebrate (birds, mammal, amphibians, and reptiles) mortality. We used roadkill data from monthly surveys of road stretches with different speed limits, traffic volume, road design, and adjacent landscape composition. Roadkills varied over time and were not randomly distributed across ecoregions and road types. Overall, the groups most frequently encountered were mammals (54.4% of total roadkills) and birds (36.2%). Mortality rates in these two groups were higher on highways than on national or local roads, whereas those of amphibians (4.6%) and reptiles (4.3%) did not differ between road types. Except for mammals, the observed variation in vertebrate roadkills across ecoregions reflects the patterns of species richness previously described in the literature. Roadkills were concentrated over relatively short periods and this pattern was repeated over study periods and for all vertebrate classes. Our findings provide baseline information about road types, time periods and taxa with a higher probability of roadkills across an extensive region. These data represent an essential step towards the future implementation of broad–scale mitigation measures.A pesar de que los estudios a gran escala sobre mortalidad de animales en las carreteras son complejos, pueden aportar información valiosa para evaluar la incidencia del tráfico en las poblaciones de animales. Durante 22 meses (entre julio de 2009 y junio de 2010 y entre abril de 2011 y marzo de 2012), muestreamos 45 tramos de carretera de 10 km de longitud distribuidos en una zona con una gran diversidad en la región de Andalucía (87.000 km2), en el sur de España. La región se dividió en cinco ecorregiones con diferentes condiciones ambientales y características del paisaje, y se analizaron la magnitud, la composición y los patrones espaciotemporales de la mortalidad de vertebrados (aves, mamíferos, anfibios y reptiles). Usamos datos de atropellos obtenidos durante muestreos mensuales en tramos de carretera con diferentes límite de velocidad, volumen de tráfico, diseño de la carretera y composición del paisaje adyacente. Los animales atropellados fueron distintos en el tiempo y no se distribuyeron aleatoriamente entre ecorregiones ni entre tipos de carretera. En total, los grupos que se encontraron con mayor frecuencia fueron los mamíferos (el 54,4% de los atropellos registrados) y las aves (el 36,2%). La tasa de mortalidad observada en estos dos grupos fue mayor en autopistas que en carreteras nacionales o locales, mientras que la mortalidad de anfibios (el 4,6%) y de reptiles (el 4,3%) no presentó diferencias entre tipos de carretera. A excepción de los mamíferos, la variación observada de la mortalidad en las carreteras entre las diferentes ecorregiones refleja los patrones de riqueza de especies descritos en las publicaciones científicas. Los atropellos se concentraron en períodos de tiempo relativamente cortos y este patrón se repitió en las dos temporadas de estudio y con respecto a todas las clases de vertebrados. Nuestros resultados proporcionan información de referencia sobre los tipos de carretera, los períodos de tiempo y los taxones con una mayor probabilidad de morir por atropello en una extensa región, lo que supone un paso esencial para la implementación de medidas de mitigación a gran escala.Fil: Canal Piña, David. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina. Consejo Superior de Investigaciones Científicas; EspañaFil: Camacho, Carlos. Consejo Superior de Investigaciones Científicas; EspañaFil: Martín, Beatriz. Complejo Huerta Grande; EspañaFil: de Lucas, Manuela. Consejo Superior de Investigaciones Científicas; EspañaFil: Ferrer, Miguel. Consejo Superior de Investigaciones Científicas; Españ
    corecore