2 research outputs found

    Zigbee Wireless Sensor Networks: Performance Study in an Apartment-Based Indoor Environment

    Get PDF
    Zigbee is a very popular technology for Internet of things (IoT) networks mainly because of its low power consumption and low-cost features. It shares the unlicensed 2.4 GHz Industrial, Scientific, and Medical (ISM) radio band with other wireless networks such as Wi-Fi. Usually, Zigbee and Wi-Fi networks coexist in indoor environments for their respective applications. Hence, the coexistence introduces interference for both types of networks lowering the performance of the networks, but Zigbee suffers more significant performance losses because of its lower transmission power than Wi-Fi. Since the number of IoT devices is increasing at an unprecedented rate due to numerous emerging applications and thus making the indoor environments very populous, the peaceful coexistence between Zigbee and Wi-Fi networks in proximity becomes an important research study. For this purpose, this paper presents a comprehensive performance study of a Zigbee network in the presence of a Wi-Fi interference network in a real-life apartment-based indoor environment where Wi-Fi access points of dense neighbors exist. The experiments were done in a XBee module-based Zigbee network for measuring the received signal strength indicator (RSSI), packet drop rate (PDR), and loopback throughput with and without nearby Wi-Fi traffic introduced on purpose. Various networking parameters such as the operating channels, the distances between Zigbee devices and Wi-Fi devices, the transmit timeout of Zigbee packets, and the transmission power of the Zigbee transmitter have been used in the experiments to study the network performance. Our results show that in the deployment of IoT networks in a smart home, radio interference from neighboring homes would not be an important factor, but serious considerations may need to be taken inside the same home. The experimental observations of this paper can serve as a good reference study for Zigbee network deployments in real indoor environments, particularly when interference sources are present in proximity

    Spectrum Sharing and Interference in Smart Homes

    Get PDF
    Internet of Things networks using Zigbee are very popular in smart homes. However, Zigbee networks are vulnerable to the interference of Wi-Fi networks because they share the same 2.4 GHz Industrial, Scientific, and Medical radio frequency band. Studies have shown that weaker Zigbee signals might be significantly interfered by stronger Wi-Fi signals. This type of interference may cause severe problems when these types of networks coexist in an indoor environment such as in a smart home. In this thesis, the performance of a Zigbee network with and without the presence of a Wi-Fi network has been evaluated in an apartment-based indoor environment mimicking a smart home. The experimental results are obtained and analyzed in terms of received signal strength indicator, packet delay, packet drop rate, and loopback throughput by changing operating channels, distances between Zigbee and Wi-Fi devices, transmission intervals of Zigbee packets, Zigbee transmit power, and Zigbee packet lengths
    corecore