1,145,563 research outputs found

    Virtual chemical reactions for drug design

    Get PDF
    Two methods for the fast, fragment-based combinatorial molecule assembly were developed. The software COLIBREE® (Combinatorial Library Breeding) generates candidate structures from scratch, based on stochastic optimization [1]. Result structures of a COLIBREE design run are based on a fixed scaffold and variable linkers and side-chains. Linkers representing virtual chemical reactions and side-chain building blocks obtained from pseudo-retrosynthetic dissection of large compound databases are exchanged during optimization. The process of molecule design employs a discrete version of Particle Swarm Optimization (PSO) [2]. Assembled compounds are scored according to their similarity to known reference ligands. Distance to reference molecules is computed in the space of the topological pharmacophore descriptor CATS [3]. In a case study, the approach was applied to the de novo design of potential peroxisome proliferator-activated receptor (PPAR gamma) selective agonists. In a second approach, we developed the formal grammar Reaction-MQL [4] for the in silico representation and application of chemical reactions. Chemical transformation schemes are defined by functional groups participating in known organic reactions. The substructures are specified by the linear Molecular Query Language (MQL) [5]. The developed software package contains a parser for Reaction-MQL-expressions and enables users to design, test and virtually apply chemical reactions. The program has already been used to create combinatorial libraries for virtual screening studies. It was also applied in fragmentation studies with different sets of retrosynthetic reactions and various compound libraries

    The efficiency of multi-target drugs: the network approach might help drug design

    Full text link
    Despite considerable progress in genome- and proteome-based high-throughput screening methods and rational drug design, the number of successful single target drugs did not increase appreciably during the past decade. Network models suggest that partial inhibition of a surprisingly small number of targets can be more efficient than the complete inhibition of a single target. This and the success stories of multi-target drugs and combinatorial therapies led us to suggest that systematic drug design strategies should be directed against multiple targets. We propose that the final effect of partial, but multiple drug actions might often surpass that of complete drug action at a single target. The future success of this novel drug design paradigm will depend not only on a new generation of computer models to identify the correct multiple hits and their multi-fitting, low-affinity drug candidates but also on more efficient in vivo testing.Comment: 6 pages, 2 figures, 1 box, 38 reference

    Ion channels: too complex for rational drug design?

    Get PDF

    Computational structure‐based drug design: Predicting target flexibility

    Get PDF
    The role of molecular modeling in drug design has experienced a significant revamp in the last decade. The increase in computational resources and molecular models, along with software developments, is finally introducing a competitive advantage in early phases of drug discovery. Medium and small companies with strong focus on computational chemistry are being created, some of them having introduced important leads in drug design pipelines. An important source for this success is the extraordinary development of faster and more efficient techniques for describing flexibility in three‐dimensional structural molecular modeling. At different levels, from docking techniques to atomistic molecular dynamics, conformational sampling between receptor and drug results in improved predictions, such as screening enrichment, discovery of transient cavities, etc. In this review article we perform an extensive analysis of these modeling techniques, dividing them into high and low throughput, and emphasizing in their application to drug design studies. We finalize the review with a section describing our Monte Carlo method, PELE, recently highlighted as an outstanding advance in an international blind competition and industrial benchmarks.We acknowledge the BSC-CRG-IRB Joint Research Program in Computational Biology. This work was supported by a grant from the Spanish Government CTQ2016-79138-R.J.I. acknowledges support from SVP-2014-068797, awarded by the Spanish Government.Peer ReviewedPostprint (author's final draft

    Extinction of cue-evoked drug-seeking relies on degrading hierarchical instrumental expectancies

    Get PDF
    There has long been need for a behavioural intervention that attenuates cue-evoked drug-seeking, but the optimal method remains obscure. To address this, we report three approaches to extinguish cue-evoked drug-seeking measured in a Pavlovian to instrumental transfer design, in non-treatment seeking adult smokers and alcohol drinkers. The results showed that the ability of a drug stimulus to transfer control over a separately trained drug-seeking response was not affected by the stimulus undergoing Pavlovian extinction training in experiment 1, but was abolished by the stimulus undergoing discriminative extinction training in experiment 2, and was abolished by explicit verbal instructions stating that the stimulus did not signal a more effective response-drug contingency in experiment 3. These data suggest that cue-evoked drug-seeking is mediated by a propositional hierarchical instrumental expectancy that the drug-seeking response is more likely to be rewarded in that stimulus. Methods which degraded this hierarchical expectancy were effective in the laboratory, and so may have therapeutic potential
    corecore