25 research outputs found

    Exploring Attacks and Defenses in Additive Manufacturing Processes: Implications in Cyber-Physical Security

    Get PDF
    Many industries are rapidly adopting additive manufacturing (AM) because of the added versatility this technology offers over traditional manufacturing techniques. But with AM, there comes a unique set of security challenges that must be addressed. In particular, the issue of part verification is critically important given the growing reliance of safety-critical systems on 3D printed parts. In this thesis, the current state of part verification technologies will be examined in the con- text of AM-specific geometric-modification attacks, and an automated tool for 3D printed part verification will be presented. This work will cover: 1) the impacts of malicious attacks on AM using geometrically-modified 3D models, 2) a 3D part reconstruction approach from medical imaging scans, 3) a mesh alignment technique based on point set registration, de- signed to handle abnormal part geometries, and 4) an automatic error detection and defect visualization tool for comparing the geometric similarity of 3D printed parts to their intended geometries

    Needle in a Haystack: Detecting Subtle Malicious Edits to Additive Manufacturing G-code Files

    Full text link
    Increasing usage of Digital Manufacturing (DM) in safety-critical domains is increasing attention on the cybersecurity of the manufacturing process, as malicious third parties might aim to introduce defects in digital designs. In general, the DM process involves creating a digital object (as CAD files) before using a slicer program to convert the models into printing instructions (e.g. g-code) suitable for the target printer. As the g-code is an intermediate machine format, malicious edits may be difficult to detect, especially when the golden (original) models are not available to the manufacturer. In this work we aim to quantify this hypothesis through a red-team/blue-team case study, whereby the red-team aims to introduce subtle defects that would impact the properties (strengths) of the 3D printed parts, and the blue-team aims to detect these modifications in the absence of the golden models. The case study had two sets of models, the first with 180 designs (with 2 compromised using 2 methods) and the second with 4320 designs (with 60 compromised using 6 methods). Using statistical modelling and machine learning (ML), the blue-team was able to detect all the compromises in the first set of data, and 50 of the compromises in the second

    Investigating 3D Printer Residual Data

    Get PDF
    The continued adoption of Additive Manufacturing (AM) technologies is raising concerns in the security, forensics, and intelligence gathering communities. These concerns range from identifying and mitigating compromised devices, to theft of intellectual property, to sabotage, to the production of prohibited objects. Previous research has provided insight into the retrieval of configuration information maintained on the devices, but this work shows that the devices can additionally maintain information about the print process. Comparisons between before and after images taken from an AM device reveal details about the device’s activities, including printed designs, menu interactions, and the print history. Patterns in the storage of that information also may be useful for reducing the amount of data that needs to be examined during an investigation. These results provide a foundation for future investigations regarding the tools and processes suitable for examining these devices
    corecore