198,718 research outputs found

    C2238/αANP modulates apolipoprotein E through Egr-1/miR199a in vascular smooth muscle cells in vitro

    Get PDF
    Subjects carrying the T2238C ANP gene variant have a higher risk to suffer a stroke or myocardial infarction. The mechanisms through which T2238C/αANP exerts detrimental vascular effects need to be fully clarified. In the present work we aimed at exploring the impact of C2238/αANP (mutant form) on atherosclerosis-related pathways. As a first step, an atherosclerosis gene expression macroarray analysis was performed in vascular smooth muscle cells (VSMCs) exposed to either T2238/αANP (wild type) or C2238/αANP. The major finding was that apolipoprotein E (ApoE) gene expression was significantly downregulated by C2238/αANP and it was upregulated by T2238/αANP. We subsequently found that C2238/αANP induces ApoE downregulation through type C natriuretic peptide receptor (NPR-C)-dependent mechanisms involving the upregulation of miR199a-3p and miR199a-5p and the downregulation of DNAJA4. In fact, NPR-C knockdown rescued ApoE level. Upregulation of miR199a by NPR-C was mediated by a reactive oxygen species-dependent increase of the early growth response protein-1 (Egr-1) transcription factor. In fact, Egr-1 knockdown abolished the impact of C2238/αANP on ApoE and miR199a. Of note, downregulation of ApoE by C2238/αANP was associated with a significant increase in inflammation, apoptosis and necrosis that was completely rescued by the exogenous administration of recombinant ApoE. In conclusion, our study dissected a novel mechanism of vascular damage exerted by C2238/αANP that is mediated by ApoE downregulation. We provide the first demonstration that C2238/αANP downregulates ApoE in VSMCs through NPR-C-dependent activation of Egr-1 and the consequent upregulation of miR199a. Restoring ApoE levels could represent a potential therapeutic strategy to counteract the harmful effects of C2238/αANP

    Perceived Maternal Invalidation and Drinking Behavior: The Role of Action Control

    Get PDF
    Alcohol use disorder is one of the most prevalent disorders worldwide. As such, researchers have examined factors contributing to alcohol use. Perception of emotional experiences in childhood as invalidating by parents is one factor that has been found to predict later alcohol use, though less is known about maternal invalidation specifically. Parental invalidation has also been found to predict difficulty regulating affective states (i.e., negative and positive affect), which is also a determinant of alcohol use. Further, researchers have studied temptation to drink and restraint from drinking as related to alcohol use to better understand drinking behavior. Though there appears to be a link, these variables have not been studied together. Thus, the current study aimed to fill this gap by examining the relationship between perceived maternal invalidation, the upregulation of positive affect and downregulation of negative affect, and temptation to drink as well as restraint from drinking. Participants were recruited via Amazon Mechanical Turk from a larger sample of US adults (n = 1128) who completed self-report measures on emotional tendencies. Participants who reported drinking alcohol in the last year were invited back to participate in the current study (n = 427, Mage = 34.08 and 54.3% female). Bivariate correlations were conducted to determine the association between perception of maternal invalidation, upregulation of positive affect (AOD) and downregulation of negative affect (AOF), temptation, and restraint regarding drinking behavior. A parallel mediator regression analysis was used to determine if greater upregulation of positive affect and greater downregulation of negative affect mediated the relationship between greater perception of maternal invalidation and greater difficulty resisting temptation to drink and restraining from drinking by evaluating direct and indirect effects using 95% bias-corrected bootstrapped confidence intervals of 5000 samples. Results indicated moderate positive correlations for upregulation of positive affect and downregulation of negative affect scores. Negative correlations were found between both upregulation of positive affect scores and downregulation of negative affect scores and restraint, temptation, and perception of maternal validation scores. Further, AOD partially mediated the relationship between perception of maternal invalidation and difficulty resisting the temptation to drink. Perception of greater maternal invalidation was also found to predict greater difficulty restraining from drinking. Clinical implications as well as study limitations are discussed

    FHL2 regulates hematopoietic stem cell functions under stress conditions.

    Get PDF
    FHL2, a member of the four and one half LIM domain protein family, is a critical transcriptional modulator. Here, we identify FHL2 as a critical regulator of hematopoietic stem cells (HSCs) that is essential for maintaining HSC self-renewal under regenerative stress. We find that Fhl2 loss has limited effects on hematopoiesis under homeostatic conditions. In contrast, Fhl2-null chimeric mice reconstituted with Fhl2-null bone marrow cells developed abnormal hematopoiesis with significantly reduced numbers of HSCs, hematopoietic progenitor cells (HPCs), red blood cells and platelets as well as hemoglobin levels. In addition, HSCs displayed a significantly reduced self-renewal capacity and were skewed toward myeloid lineage differentiation. We find that Fhl2 loss reduces both HSC quiescence and survival in response to regenerative stress, probably as a consequence of Fhl2-loss-mediated downregulation of cyclin-dependent kinase-inhibitors, including p21(Cip) and p27(Kip1). Interestingly, FHL2 is regulated under the control of a tissue-specific promoter in hematopoietic cells and it is downregulated by DNA hypermethylation in the leukemia cell line and primary leukemia cells. Furthermore, we find that downregulation of FHL2 frequently occurs in myelodysplastic syndrome and acute myeloid leukemia patients, raising a possibility that FHL2 downregulation has a role in the pathogenesis of myeloid malignancies

    Transcriptional downregulation of agr expression in Staphylococcus aureus during growth in human serum can be overcome by constitutively active mutant forms of the sensor kinase AgrC

    Get PDF
    The temporal and cell density-dependent regulation of expression of virtually all the Staphylococcus aureus virulon is under the control of the agr (accessory gene regulatory) operon. The expression of the agr operon is subject to transcriptional regulation by the AgrA/C two-component response regulator/sensor kinase pair. During bacteraemia, a frequent syndrome caused by methicillin-resistant S. aureus (MRSA), the transcriptional downregulation of agr expression has been attributed to the sequestration of the quorum-signalling molecule auto-inducing peptide (AIP) by the human serum component apolipoprotein B as part of an innate immune response to infection. However, it is not known whether transcriptional downregulation of agr expression during growth in human serum is additionally subjected to regulation by transcription regulatory proteins that either directly or indirectly affect transcription from the agr operon promoters. Here, using chromosomal fluorescence reporters of agr expression in S. aureus, we show that the transcriptional downregulation of agr expression in human serum can be overcome using constitutive active mutant forms of AgrC. Therefore, it seems that the sequestration of the AIP is likely to be the only mechanism by which the host innate immune response limits agr expression at the transcriptional level to maintain the host–pathogen balance towards a noninvasive outcome

    Salmonella Typhimurium interferes with the humoral immune response in pigs

    Get PDF
    Foodborne salmonellosis is one of the most important bacterial zoonotic diseases worldwide. Salmonella Typhimurium is the serovar most frequently isolated from slaughter pigs in Europe. Circumvention of the host’s immune system by Salmonella might contribute to persistent infection of pigs. We found that Salmonella Typhimurium strain 112910a, which is able to persist in pigs, was capable of downregulating the expression of major histocompatibility class II (MHC II) molecules on porcine alveolar macrophages (PAM) in a Salmonella pathogenicity island 2 (SPI-2) dependent way and that MHC II downregulation was Salmonella strain dependent. The MHC II downregulation capacity was abolished when bacteria were opsonized with Salmonella-specific antibodies. Furthermore, intracellular proliferation of Salmonella Typhimurium opsonized with Salmonella positive pig serum was significantly impaired compared to that of the bacteria opsonized with negative pig serum. In a subsequent in vivo experiment, Salmonella Typhimurium strain MB2216 that did not induce MHC II downregulation in vitro, was shed less and persisted less but induced earlier seroconversion in pigs than strain 112910a. From the in vitro data, it is proposed that Salmonella Typhimurium downregulates the humoral immune response to promote intracellular survival inside porcine macrophages, contributing to long-term Salmonella persistence in pigs. The fact that the less persistent strain MB2216 induced earlier seroconversion than strain 112910a is of major interest for Salmonella-monitoring programs primarily based on serology, since this indicates that more persisting strains are more likely to escape serological detection

    Notch signaling sustains the expression of Mcl-1 and the activity of eIF4E to promote cell survival in CLL

    Get PDF
    In chronic lymphocytic leukemia (CLL), Notch1 and Notch2 signaling is constitutively activated and contributes to apoptosis resistance. We show that genetic inhibition of either Notch1 or Notch2, through small-interfering RNA, increases apoptosis of CLL cells and is associated with decreased levels of the anti-apoptotic protein Mcl-1. Thus, Notch signaling promotes CLL cell survival at least in part by sustaining Mcl-1 expression. In CLL cells, an enhanced Notch activation also contributes to the increase in Mcl-1 expression and cell survival induced by IL-4.Mcl-1 downregulation by Notch targeting is not due to reduced transcription or degradation by caspases, but in part, to increased degradation by the proteasome. Mcl-1 downregulation by Notch targeting is also accompanied by reduced phosphorylation of eukaryotic translation initiation factor 4E (eIF4E), suggesting that this protein is another target of Notch signaling in CLL cells.Overall, we show that Notch signaling sustains CLL cell survival by promoting Mcl-1 expression and eIF4E activity, and given the oncogenic role of these factors, we underscore the therapeutic potential of Notch inhibition in CLL

    Splice variants of DOMINO control Drosophila circadian behavior and pacemaker neuron maintenance.

    Get PDF
    Circadian clocks control daily rhythms in behavior and physiology. In Drosophila, the small ventral lateral neurons (sLNvs) expressing PIGMENT DISPERSING FACTOR (PDF) are the master pacemaker neurons generating locomotor rhythms. Despite the importance of sLNvs and PDF in circadian behavior, little is known about factors that control sLNvs maintenance and PDF accumulation. Here, we identify the Drosophila SWI2/SNF2 protein DOMINO (DOM) as a key regulator of circadian behavior. Depletion of DOM in circadian neurons eliminates morning anticipatory activity under light dark cycle and impairs behavioral rhythmicity in constant darkness. Interestingly, the two major splice variants of DOM, DOM-A and DOM-B have distinct circadian functions. DOM-A depletion mainly leads to arrhythmic behavior, while DOM-B knockdown lengthens circadian period without affecting the circadian rhythmicity. Both DOM-A and DOM-B bind to the promoter regions of key pacemaker genes period and timeless, and regulate their protein expression. However, we identify that only DOM-A is required for the maintenance of sLNvs and transcription of pdf. Lastly, constitutive activation of PDF-receptor signaling rescued the arrhythmia and period lengthening of DOM downregulation. Taken together, our findings reveal that two splice variants of DOM play distinct roles in circadian rhythms through regulating abundance of pacemaker proteins and sLNvs maintenance

    Activin and TGFβ use diverging mitogenic signaling in advanced colon cancer.

    Get PDF
    BackgroundUnderstanding cell signaling pathways that contribute to metastatic colon cancer is critical to risk stratification in the era of personalized therapeutics. Here, we dissect the unique involvement of mitogenic pathways in a TGFβ or activin-induced metastatic phenotype of colon cancer.MethodMitogenic signaling/growth factor receptor status and p21 localization were correlated in primary colon cancers and intestinal tumors from either AOM/DSS treated ACVR2A (activin receptor 2) -/- or wild type mice. Colon cancer cell lines (+/- SMAD4) were interrogated for ligand-induced PI3K and MEK/ERK pathway activation and downstream protein/phospho-isoform expression/association after knockdown and pharmacologic inhibition of pathway members. EMT was assessed using epithelial/mesenchymal markers and migration assays.ResultsIn primary colon cancers, loss of nuclear p21 correlated with upstream activation of activin/PI3K while nuclear p21 expression was associated with TGFβ/MEK/ERK pathway activation. Activin, but not TGFβ, led to PI3K activation via interaction of ACVR1B and p85 independent of SMAD4, resulting in p21 downregulation. In contrast, TGFβ increased p21 via MEK/ERK pathway through a SMAD4-dependent mechanism. While activin induced EMT via PI3K, TGFβ induced EMT via MEK/ERK activation. In vivo, loss of ACVR2A resulted in loss of pAkt, consistent with activin-dependent PI3K signaling.ConclusionAlthough activin and TGFβ share growth suppressive SMAD signaling in colon cancer, they diverge in their SMAD4-independent pro-migratory signaling utilizing distinct mitogenic signaling pathways that affect EMT. p21 localization in colon cancer may determine a dominant activin versus TGFβ ligand signaling phenotype warranting further validation as a therapeutic biomarker prior to targeting TGFβ family receptors

    Small RNAs Establish Delays and Temporal Thresholds in Gene Expression

    Get PDF
    Non-coding RNAs are crucial regulators of gene expression in prokaryotes and eukaryotes, but it remains poorly understood how they affect the dynamics of transcriptional networks. We analyzed the temporal characteristics of the cyanobacterial iron stress response by mathematical modeling and quantitative experimental analyses, and focused on the role of a recently discovered small non-coding RNA, IsrR. We found that IsrR is responsible for a pronounced delay in the accumulation of isiA mRNA encoding the late-phase stress protein, IsiA, and that it ensures a rapid decline in isiA levels once external stress triggers are removed. These kinetic properties allow the system to selectively respond to sustained (as opposed to transient) stimuli, and thus establish a temporal threshold, which prevents energetically costly IsiA accumulation under short-term stress conditions. Biological information is frequently encoded in the quantitative aspects of intracellular signals (e.g., amplitude and duration). Our simulations reveal that competitive inhibition and regulated degradation allow intracellular regulatory networks to efficiently discriminate between transient and sustained inputs
    corecore