4 research outputs found

    Application of multi-sensor advanced DInSAR analysis to severe land subsidence recognition: Alto Guadalentín Basin (Spain)

    Get PDF
    Multi-sensor advanced DInSAR analyses have been performed and compared with two GPS station measurements, in order to evaluate the land subsidence evolution in a 20-year period, in the Alto Guadalentín Basin where the highest rate of man-induced subsidence (> 10 cm yr−1) of Europe had been detected. The control mechanisms have been examined comparing the advanced DInSAR data with conditioning and triggering factors (i.e. isobaths of Plio-Quaternary deposits, soft soil thickness and piezometric level).This work is financially supported by the DORIS project (Ground Deformation Risk Scenarios: an Advanced Assessment Service) funded by the EC-GMES-FP7 initiative (Grant Agreement 423 no. 242212). ALOS PALSAR images were provided by the project JAXA-1209. Part of this work is supported by the Spanish Government under project TEC2011-28201-C02-02 and TIN2014-55413-C2-2-P and by the project 15224/PI/10 from the Regional Agency of Science and Technology in Murcia. Additional funding was obtained from the Spanish Research Program through the projects AYA2010-17448, ESP2013-47780-C2-1-R and ESP2013-47780-C2-2-Rand by the Ministry of Education, Culture and Sport through the project PRX14/00100

    Application of multi-sensor advanced DInSAR analysis to severe land subsidence recognition: Alto Guadalentín Basin (Spain)

    Get PDF
    Multi-sensor advanced DInSAR analyses have been performed and compared with two GPS station measurements, in order to evaluate the land subsidence evolution in a 20-year period, in the Alto Guadalentín Basin where the highest rate of man-induced subsidence (> 10 cm yr−1) of Europe had been detected. The control mechanisms have been examined comparing the advanced DInSAR data with conditioning and triggering factors (i.e. isobaths of Plio-Quaternary deposits, soft soil thickness and piezometric level)

    Application of multi-sensor advanced DInSAR analysis to severe land subsidence recognition: Alto Guadalentín Basin (Spain)

    No full text
    Multi-sensor advanced DInSAR analyses have been performed and compared with two GPS station measurements, in order to evaluate the land subsidence evolution in a 20-year period, in the Alto Guadalentín Basin where the highest rate of man-induced subsidence (> 10 cm yr −1) of Europe had been detected. The control mechanisms have been examined comparing the advanced DInSAR data with conditioning and triggering factors (i.e. isobaths of Plio-Quaternary deposits, soft soil thickness and piezometric level)
    corecore