1 research outputs found

    Electrospun Oxygen Scavenging Films of Poly(3-hydroxybutyrate) Containing Palladium Nanoparticles for Active Packaging Applications

    Full text link
    [EN] This paper reports on the development and characterization of oxygen scavenging films made of poly(3-hydroxybutyrate) (PHB) containing palladium nanoparticles (PdNPs) prepared by electrospinning followed by annealing treatment at 160 degrees C. The PdNPs were modified with the intention to optimize their dispersion and distribution in PHB by means of two different surfactants permitted for food contact applications, i.e., hexadecyltrimethylammonium bromide (CTAB) and tetraethyl orthosilicate (TEOS). Analysis of the morphology and characterization of the chemical, thermal, mechanical, and water and limonene vapor barrier properties and the oxygen scavenging capacity of the various PHB materials were carried out. From the results, it was seen that a better dispersion and distribution was obtained using CTAB as the dispersing aid. As a result, the PHB/PdNP nanocomposites containing CTAB provided also the best oxygen scavenging performance. These films offer a significant potential as new active coating or interlayer systems for application in the design of novel active food packaging structures.This research has received funding from the Spanish Ministry of Economy and Competitiveness (MINECO, project AGL2015-63855-C2-1-R) and the EU H2020 project YPACK (reference number 773872). A.C. and S.T.-G. would like to thank the Brazilian Council for Scientific and Technological Development (CNPq) and MINECO for her predoctoral grant (205955/2014-2) and his Juan de la Cierva contract (IJCI-2016-29675), respectively.Cherpinski, A.; Gozutok, M.; Turkoglu Sasmazel, H.; Torres-Giner, S.; Lagaron, JM. (2018). Electrospun Oxygen Scavenging Films of Poly(3-hydroxybutyrate) Containing Palladium Nanoparticles for Active Packaging Applications. Nanomaterials. 8(7):1-19. https://doi.org/10.3390/nano8070469S11987Puglia, D., Fortunati, E., D’Amico, D. A., Manfredi, L. B., Cyras, V. P., & Kenny, J. M. (2014). Influence of organically modified clays on the properties and disintegrability in compost of solution cast poly(3-hydroxybutyrate) films. Polymer Degradation and Stability, 99, 127-135. doi:10.1016/j.polymdegradstab.2013.11.013Ma, P., Xu, P., Chen, M., Dong, W., Cai, X., Schmit, P., … Lemstra, P. J. (2014). Structure–property relationships of reactively compatibilized PHB/EVA/starch blends. Carbohydrate Polymers, 108, 299-306. doi:10.1016/j.carbpol.2014.02.058Molinaro, S., Cruz Romero, M., Boaro, M., Sensidoni, A., Lagazio, C., Morris, M., & Kerry, J. (2013). Effect of nanoclay-type and PLA optical purity on the characteristics of PLA-based nanocomposite films. Journal of Food Engineering, 117(1), 113-123. doi:10.1016/j.jfoodeng.2013.01.021Imre, B., & Pukánszky, B. (2013). Compatibilization in bio-based and biodegradable polymer blends. European Polymer Journal, 49(6), 1215-1233. doi:10.1016/j.eurpolymj.2013.01.019Bittmann, B., Bouza, R., Barral, L., Diez, J., & Ramirez, C. (2013). Poly(3-hydroxybutyrate-co -3-hydroxyvalerate)/clay nanocomposites for replacement of mineral oil based materials. Polymer Composites, 34(7), 1033-1040. doi:10.1002/pc.22510Castro-Mayorga, J. L., Fabra, M. J., & Lagaron, J. M. (2016). Stabilized nanosilver based antimicrobial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites of interest in active food packaging. Innovative Food Science & Emerging Technologies, 33, 524-533. doi:10.1016/j.ifset.2015.10.019Bartczak, Z., Galeski, A., Kowalczuk, M., Sobota, M., & Malinowski, R. (2013). Tough blends of poly(lactide) and amorphous poly([R,S]-3-hydroxy butyrate) – morphology and properties. European Polymer Journal, 49(11), 3630-3641. doi:10.1016/j.eurpolymj.2013.07.033Furukawa, T., Sato, H., Murakami, R., Zhang, J., Duan, Y.-X., Noda, I., … Ozaki, Y. (2005). Structure, Dispersibility, and Crystallinity of Poly(hydroxybutyrate)/Poly(l-lactic acid) Blends Studied by FT-IR Microspectroscopy and Differential Scanning Calorimetry. Macromolecules, 38(15), 6445-6454. doi:10.1021/ma0504668Zhang, M., & Thomas, N. L. (2011). Blending polylactic acid with polyhydroxybutyrate: The effect on thermal, mechanical, and biodegradation properties. Advances in Polymer Technology, 30(2), 67-79. doi:10.1002/adv.20235Yildirim, S., Röcker, B., Rüegg, N., & Lohwasser, W. (2015). Development of Palladium-based Oxygen Scavenger: Optimization of Substrate and Palladium Layer Thickness. Packaging Technology and Science, 28(8), 710-718. doi:10.1002/pts.2134Cernohorsky, O., Zdansky, K., Zavadil, J., Kacerovsky, P., & Piksova, K. (2011). Palladium nanoparticles on InP for hydrogen detection. Nanoscale Research Letters, 6(1). doi:10.1186/1556-276x-6-410Damaj, Z., Joly, C., & Guillon, E. (2014). Toward New Polymeric Oxygen Scavenging Systems: Formation of Poly(vinyl alcohol) Oxygen Scavenger Film. Packaging Technology and Science, 28(4), 293-302. doi:10.1002/pts.2112Torres-Giner, S., Pérez-Masiá, R., & Lagaron, J. M. (2016). A review on electrospun polymer nanostructures as advanced bioactive platforms. Polymer Engineering & Science, 56(5), 500-527. doi:10.1002/pen.24274Echegoyen, Y., Fabra, M. J., Castro-Mayorga, J. L., Cherpinski, A., & Lagaron, J. M. (2017). High throughput electro-hydrodynamic processing in food encapsulation and food packaging applications: Viewpoint. Trends in Food Science & Technology, 60, 71-79. doi:10.1016/j.tifs.2016.10.019Dainelli, D., Gontard, N., Spyropoulos, D., Zondervan-van den Beuken, E., & Tobback, P. (2008). Active and intelligent food packaging: legal aspects and safety concerns. Trends in Food Science & Technology, 19, S103-S112. doi:10.1016/j.tifs.2008.09.011Kundu, S. (2013). A new route for the formation of Au nanowires and application of shape-selective Au nanoparticles in SERS studies. J. Mater. Chem. C, 1(4), 831-842. doi:10.1039/c2tc00315eMayer, A., & Antonietti, M. (1998). Investigation of polymer-protected noble metal nanoparticles by transmission electron microscopy: control of particle morphology and shape. Colloid & Polymer Science, 276(9), 769-779. doi:10.1007/s003960050309Cherpinski, A., Torres-Giner, S., Cabedo, L., & Lagaron, J. M. (2017). Post-processing optimization of electrospun submicron poly(3-hydroxybutyrate) fibers to obtain continuous films of interest in food packaging applications. Food Additives & Contaminants: Part A, 34(10), 1817-1830. doi:10.1080/19440049.2017.1355115Tekmen, C., Tsunekawa, Y., & Nakanishi, H. (2010). Electrospinning of carbon nanofiber supported Fe/Co/Ni ternary alloy nanoparticles. Journal of Materials Processing Technology, 210(3), 451-455. doi:10.1016/j.jmatprotec.2009.10.006Sainudeen, S. S., Asok, L. B., Varghese, A., Nair, A. S., & Krishnan, G. (2017). Surfactant-driven direct synthesis of a hierarchical hollow MgO nanofiber–nanoparticle composite by electrospinning. RSC Advances, 7(56), 35160-35168. doi:10.1039/c7ra05812hSakai, S., Kawakami, K., & Taya, M. (2012). Controlling the Diameters of Silica Nanofibers Obtained by Sol–Gel/Electrospinning Methods. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 45(6), 436-440. doi:10.1252/jcej.11we249Castro-Mayorga, J., Fabra, M., Cabedo, L., & Lagaron, J. (2016). On the Use of the Electrospinning Coating Technique to Produce Antimicrobial Polyhydroxyalkanoate Materials Containing In Situ-Stabilized Silver Nanoparticles. Nanomaterials, 7(1), 4. doi:10.3390/nano7010004Martínez-Abad, A., Sanchez, G., Lagaron, J. M., & Ocio, M. J. (2012). Influence of speciation in the release profiles and antimicrobial performance of electrospun ethylene vinyl alcohol copolymer (EVOH) fibers containing ionic silver ions and silver nanoparticles. Colloid and Polymer Science, 291(6), 1381-1392. doi:10.1007/s00396-012-2870-0Shaukat, M. S., Zulfiqar, S., & Sarwar, M. I. (2015). Incorporation of palladium nanoparticles into aromatic polyamide/clay nanocomposites through facile dry route. Polymer Science Series B, 57(4), 380-386. doi:10.1134/s1560090415040120Yeo, S. Y., Tan, W. L., Abu Bakar, M., & Ismail, J. (2010). Silver sulfide/poly(3-hydroxybutyrate) nanocomposites: Thermal stability and kinetic analysis of thermal degradation. Polymer Degradation and Stability, 95(8), 1299-1304. doi:10.1016/j.polymdegradstab.2010.02.025Díez-Pascual, A., & Díez-Vicente, A. (2014). Poly(3-hydroxybutyrate)/ZnO Bionanocomposites with Improved Mechanical, Barrier and Antibacterial Properties. International Journal of Molecular Sciences, 15(6), 10950-10973. doi:10.3390/ijms150610950Torres-Giner, S., Montanes, N., Boronat, T., Quiles-Carrillo, L., & Balart, R. (2016). Melt grafting of sepiolite nanoclay onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by reactive extrusion with multi-functional epoxy-based styrene-acrylic oligomer. European Polymer Journal, 84, 693-707. doi:10.1016/j.eurpolymj.2016.09.057Primeau, N., Vautey, C., & Langlet, M. (1997). The effect of thermal annealing on aerosol-gel deposited SiO2 films: a FTIR deconvolution study. Thin Solid Films, 310(1-2), 47-56. doi:10.1016/s0040-6090(97)00340-4Pachekoski, W. M., Dalmolin, C., & Agnelli, J. A. M. (2012). The influence of the industrial processing on the degradation of poly(hidroxybutyrate) - PHB. Materials Research, 16(2), 237-332. doi:10.1590/s1516-14392012005000180Mottin, A. C., Ayres, E., Oréfice, R. L., & Câmara, J. J. D. (2016). What Changes in Poly(3-Hydroxybutyrate) (PHB) When Processed as Electrospun Nanofibers or Thermo-Compression Molded Film? Materials Research, 19(1), 57-66. doi:10.1590/1980-5373-mr-2015-0280Choudalakis, G., & Gotsis, A. D. (2009). Permeability of polymer/clay nanocomposites: A review. European Polymer Journal, 45(4), 967-984. doi:10.1016/j.eurpolymj.2009.01.027Terada, M., & Marchessault, R. H. (1999). Determination of solubility parameters for poly(3-hydroxyalkanoates). International Journal of Biological Macromolecules, 25(1-3), 207-215. doi:10.1016/s0141-8130(99)00036-7Tan, B., & Thomas, N. L. (2016). A review of the water barrier properties of polymer/clay and polymer/graphene nanocomposites. Journal of Membrane Science, 514, 595-612. doi:10.1016/j.memsci.2016.05.026Busolo, M. A., Fernandez, P., Ocio, M. J., & Lagaron, J. M. (2010). Novel silver-based nanoclay as an antimicrobial in polylactic acid food packaging coatings. Food Additives & Contaminants: Part A, 27(11), 1617-1626. doi:10.1080/19440049.2010.506601Rhim, J. W., Wang, L. F., & Hong, S. I. (2013). Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocolloids, 33(2), 327-335. doi:10.1016/j.foodhyd.2013.04.002Sanchez-Garcia, M. D., Gimenez, E., & Lagaron, J. M. (2008). Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydrate Polymers, 71(2), 235-244. doi:10.1016/j.carbpol.2007.05.041Nyberg, C., & Tengstål, C. G. (1984). Adsorption and reaction of water, oxygen, and hydrogen on Pd(100): Identification of adsorbed hydroxyl and implications for the catalytic H2–O2 reaction. The Journal of Chemical Physics, 80(7), 3463-3468. doi:10.1063/1.447102Singh, L. P., Bhattacharyya, S. K., Mishra, G., & Ahalawat, S. (2011). Functional role of cationic surfactant to control the nano size of silica powder. Applied Nanoscience, 1(3), 117-122. doi:10.1007/s13204-011-0016-1Nestorson, A., Neoh, K. G., Kang, E. T., Järnström, L., & Leufvén, A. (2008). Enzyme immobilization in latex dispersion coatings for active food packaging. Packaging Technology and Science, 21(4), 193-205. doi:10.1002/pts.79
    corecore