1 research outputs found

    Use of natural diversity and biotechnology approaches to increase quality and nutritional content of tomato and grape

    Get PDF
    [EN] Improving fruit quality has become a major goal in plant breeding. Direct approaches to tackling fruit quality traits specifically linked to consumer preferences and environmental friendliness, such as improved flavor, nutraceutical compounds, and sustainability, have slowly been added to a breeder priority list that already includes traits like productivity, efficiency, and, especially, pest and disease control. Breeders already use molecular genetic tools to improve fruit quality although most advances have been made in producer and industrial quality standards. Furthermore, progress has largely been limited to simple agronomic traits easy-to-observe, whereas the vast majority of quality attributes, specifically those relating to flavor and nutrition, are complex and have mostly been neglected. Fortunately, wild germplasm, which is used for resistance against/tolerance of environmental stresses (including pathogens), is still available and harbors significant genetic variation for taste and health-promoting traits. Similarly, heirloom/traditional varieties could be used to identify which genes contribute to flavor and health quality and, at the same time, serve as a good source of the best alleles for organoleptic quality improvement. Grape (Vitis vinifera L.) and tomato (Solanum lycopersicum L.) produce fleshy, berry-type fruits, among the most consumed in the world. Both have undergone important domestication and selection processes, that have dramatically reduced their genetic variability, and strongly standardized fruit traits. Moreover, more and more consumers are asking for sustainable production, incompatible with the wide range of chemical inputs. In the present paper, we review the genetic resources available to tomato/grape breeders, and the recent technological progresses that facilitate the identification of genes/alleles of interest within the natural or generated variability gene pool. These technologies include omics, high-throughput phenotyping/phenomics, and biotech approaches. Our review also covers a range of technologies used to transfer to tomato and grape those alleles considered of interest for fruit quality. These include traditional breeding, TILLING (Targeting Induced Local Lesions in Genomes), genetic engineering, or NPBT (New Plant Breeding Technologies). Altogether, the combined exploitation of genetic variability and innovative biotechnological tools may facilitate breeders to improve fruit quality tacking more into account the consumer standards and the needs to move forward into more sustainable farming practices.AF was provided by the Portuguese Foundation for Science and Technology (SFRH/BPD/100928/2014, FCT Investigator IF/00169/2015, PEst-OE/BIA/UI4046/2014), and to AG by the EC H2020 program (TRADITOM project 634561). QG benefited of the support of the Sunrise project ANR-11-BTBR-0005 funded by the ANR. The authors would like to thank the COST (European Cooperation in Science and Technology) Action FA1106 Quality fruit and Action CA15136 EUROCAROTEN.Gascuel, Q.; Diretto, G.; Monforte Gilabert, AJ.; Fortes, AM.; Granell Richart, A. (2017). Use of natural diversity and biotechnology approaches to increase quality and nutritional content of tomato and grape. Frontiers in Plant Science. 8:11-34. https://doi.org/10.3389/fpls.2017.00652S11348Abbo, S., Pinhasi van-Oss, R., Gopher, A., Saranga, Y., Ofner, I., & Peleg, Z. (2014). Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes. Trends in Plant Science, 19(6), 351-360. doi:10.1016/j.tplants.2013.12.002Agudelo-Romero, P., Erban, A., Rego, C., Carbonell-Bejerano, P., Nascimento, T., Sousa, L., … Fortes, A. M. (2015). Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea. Journal of Experimental Botany, 66(7), 1769-1785. doi:10.1093/jxb/eru517Agudelo-Romero, P., Erban, A., Sousa, L., Pais, M. S., Kopka, J., & Fortes, A. M. (2013). Search for Transcriptional and Metabolic Markers of Grape Pre-Ripening and Ripening and Insights into Specific Aroma Development in Three Portuguese Cultivars. PLoS ONE, 8(4), e60422. doi:10.1371/journal.pone.0060422Andersen, M. M., Landes, X., Xiang, W., Anyshchenko, A., Falhof, J., Østerberg, J. T., … Palmgren, M. G. (2015). Feasibility of new breeding techniques for organic farming. Trends in Plant Science, 20(7), 426-434. doi:10.1016/j.tplants.2015.04.011Andrade-Sanchez, P., Gore, M. A., Heun, J. T., Thorp, K. R., Carmo-Silva, A. E., French, A. N., … White, J. W. (2014). Development and evaluation of a field-based high-throughput phenotyping platform. Functional Plant Biology, 41(1), 68. doi:10.1071/fp13126Anesi, A., Stocchero, M., Dal Santo, S., Commisso, M., Zenoni, S., Ceoldo, S., … Guzzo, F. (2015). Towards a scientific interpretation of the terroir concept: plasticity of the grape berry metabolome. BMC Plant Biology, 15(1). doi:10.1186/s12870-015-0584-4Aoki, K., Ogata, Y., Igarashi, K., Yano, K., Nagasaki, H., Kaminuma, E., & Toyoda, A. (2013). Functional genomics of tomato in a post-genome-sequencing phase. Breeding Science, 63(1), 14-20. doi:10.1270/jsbbs.63.14Apel, W., & Bock, R. (2009). Enhancement of Carotenoid Biosynthesis in Transplastomic Tomatoes by Induced Lycopene-to-Provitamin A Conversion. Plant Physiology, 151(1), 59-66. doi:10.1104/pp.109.140533Araus, J. L., & Cairns, J. E. (2014). Field high-throughput phenotyping: the new crop breeding frontier. Trends in Plant Science, 19(1), 52-61. doi:10.1016/j.tplants.2013.09.008Arms, E. M., Bloom, A. J., & St. Clair, D. A. (2015). High-resolution mapping of a major effect QTL from wild tomato Solanum habrochaites that influences water relations under root chilling. Theoretical and Applied Genetics, 128(9), 1713-1724. doi:10.1007/s00122-015-2540-yBai, H., Tao, F., Xiao, D., Liu, F., & Zhang, H. (2015). Attribution of yield change for rice-wheat rotation system in China to climate change, cultivars and agronomic management in the past three decades. Climatic Change, 135(3-4), 539-553. doi:10.1007/s10584-015-1579-8Bai, Y., & Lindhout, P. (2007). Domestication and Breeding of Tomatoes: What have We Gained and What Can We Gain in the Future? Annals of Botany, 100(5), 1085-1094. doi:10.1093/aob/mcm150Barba, P., Cadle-Davidson, L., Harriman, J., Glaubitz, J. C., Brooks, S., Hyma, K., & Reisch, B. (2013). Grapevine powdery mildew resistance and susceptibility loci identified on a high-resolution SNP map. Theoretical and Applied Genetics, 127(1), 73-84. doi:10.1007/s00122-013-2202-xBarbier de Reuille, P., Routier-Kierzkowska, A.-L., Kierzkowski, D., Bassel, G. W., Schüpbach, T., Tauriello, G., … Smith, R. S. (2015). MorphoGraphX: A platform for quantifying morphogenesis in 4D. eLife, 4. doi:10.7554/elife.05864Barker, C. L., Donald, T., Pauquet, J., Ratnaparkhe, M. B., Bouquet, A., Adam-Blondon, A.-F., … Dry, I. (2005). Genetic and physical mapping of the grapevine powdery mildew resistance gene, Run1, using a bacterial artificial chromosome library. Theoretical and Applied Genetics, 111(2), 370-377. doi:10.1007/s00122-005-2030-8Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., … Horvath, P. (2007). CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes. Science, 315(5819), 1709-1712. doi:10.1126/science.1138140Barrantes, W., Fernández-del-Carmen, A., López-Casado, G., González-Sánchez, M. Á., Fernández-Muñoz, R., Granell, A., & Monforte, A. J. (2014). Highly efficient genomics-assisted development of a library of introgression lines of Solanum pimpinellifolium. Molecular Breeding, 34(4), 1817-1831. doi:10.1007/s11032-014-0141-0Barsan, C., Zouine, M., Maza, E., Bian, W., Egea, I., Rossignol, M., … Pech, J.-C. (2012). Proteomic Analysis of Chloroplast-to-Chromoplast Transition in Tomato Reveals Metabolic Shifts Coupled with Disrupted Thylakoid Biogenesis Machinery and Elevated Energy-Production Components. Plant Physiology, 160(2), 708-725. doi:10.1104/pp.112.203679Bélanger, M. ‐C., Roger, J. ‐M., Cartolaro, P., Viau, A. A., & Bellon‐Maurel, V. (2008). Detection of powdery mildew in grapevine using remotely sensed UV‐induced fluorescence. International Journal of Remote Sensing, 29(6), 1707-1724. doi:10.1080/01431160701395245Berger, S., Papadopoulos, M., Schreiber, U., Kaiser, W., & Roitsch, T. (2004). Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato. Physiologia Plantarum, 122(4), 419-428. doi:10.1111/j.1399-3054.2004.00433.xBergougnoux, V. (2014). The history of tomato: From domestication to biopharming. Biotechnology Advances, 32(1), 170-189. doi:10.1016/j.biotechadv.2013.11.003Bernacchi, D., Beck-Bunn, T., Eshed, Y., Lopez, J., Petiard, V., Uhlig, J., … Tanksley, S. (1998). Advanced backcross QTL analysis in tomato. I. Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theoretical and Applied Genetics, 97(3), 381-397. doi:10.1007/s001220050908Bernardo, R. (2008). Molecular Markers and Selection for Complex Traits in Plants: Learning from the Last 20 Years. Crop Science, 48(5), 1649-1664. doi:10.2135/cropsci2008.03.0131Biais, B., Bénard, C., Beauvoit, B., Colombié, S., Prodhomme, D., Ménard, G., … Gibon, Y. (2014). Remarkable Reproducibility of Enzyme Activity Profiles in Tomato Fruits Grown under Contrasting Environments Provides a Roadmap for Studies of Fruit Metabolism. Plant Physiology, 164(3), 1204-1221. doi:10.1104/pp.113.231241Bino, R. J., De Vos, C. H. R., Lieberman, M., Hall, R. D., Bovy, A., Jonker, H. H., … Levin, I. (2005). The light-hyperresponsive high pigment-2dg mutation of tomato: alterations in the fruit metabolome. New Phytologist, 166(2), 427-438. doi:10.1111/j.1469-8137.2005.01362.xBlanca, J., Montero-Pau, J., Sauvage, C., Bauchet, G., Illa, E., Díez, M. J., … Cañizares, J. (2015). Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics, 16(1). doi:10.1186/s12864-015-1444-1Boggess, M. V., Lippolis, J. D., Hurkman, W. J., Fagerquist, C. K., Briggs, S. P., Gomes, A. V., … Bala, K. (2013). The need for agriculture phenotyping: «Moving from genotype to phenotype». Journal of Proteomics, 93, 20-39. doi:10.1016/j.jprot.2013.03.021Bogs, J., Ebadi, A., McDavid, D., & Robinson, S. P. (2005). Identification of the Flavonoid Hydroxylases from Grapevine and Their Regulation during Fruit Development. Plant Physiology, 140(1), 279-291. doi:10.1104/pp.105.073262Bogs, J., Jaffé, F. W., Takos, A. M., Walker, A. R., & Robinson, S. P. (2007). The Grapevine Transcription Factor VvMYBPA1 Regulates Proanthocyanidin Synthesis during Fruit Development. Plant Physiology, 143(3), 1347-1361. doi:10.1104/pp.106.093203Bolger, M. E., Weisshaar, B., Scholz, U., Stein, N., Usadel, B., & Mayer, K. F. (2014). Plant genome sequencing — applications for crop improvement. Current Opinion in Biotechnology, 26, 31-37. doi:10.1016/j.copbio.2013.08.019Broman, K. W. (2004). The Genomes of Recombinant Inbred Lines. Genetics, 169(2), 1133-1146. doi:10.1534/genetics.104.035212Brooks, C., Nekrasov, V., Lippman, Z. B., & Van Eck, J. (2014). Efficient Gene Editing in Tomato in the First Generation Using the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-Associated9 System. PLANT PHYSIOLOGY, 166(3), 1292-1297. doi:10.1104/pp.114.247577Burbidge, A., Grieve, T. M., Jackson, A., Thompson, andrew, McCarty, D. R., & Taylor, I. B. (1999). Characterization of the ABA-deficient tomato mutantnotabilisand its relationship with maizeVp14. The Plant Journal, 17(4), 427-431. doi:10.1046/j.1365-313x.1999.00386.xCalafiore, R., Ruggieri, V., Raiola, A., Rigano, M. M., Sacco, A., Hassan, M. I., … Barone, A. (2016). Exploiting Genomics Resources to Identify Candidate Genes Underlying Antioxidants Content in Tomato Fruit. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00397Capel, C., Fernández del Carmen, A., Alba, J. M., Lima-Silva, V., Hernández-Gras, F., Salinas, M., … Lozano, R. (2015). Wide-genome QTL mapping of fruit quality traits in a tomato RIL population derived from the wild-relative species Solanum pimpinellifolium L. Theoretical and Applied Genetics, 128(10), 2019-2035. doi:10.1007/s00122-015-2563-4Carrera, J., Fernández del Carmen, A., Fernández-Muñoz, R., Rambla, J. L., Pons, C., Jaramillo, A., … Granell, A. (2012). Fine-Tuning Tomato Agronomic Properties by Computational Genome Redesign. PLoS Computational Biology, 8(6), e1002528. doi:10.1371/journal.pcbi.1002528Causse, M. (2004). A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. Journal of Experimental Botany, 55(403), 1671-1685. doi:10.1093/jxb/erh207Cavallini, E., Matus, J. T., Finezzo, L., Zenoni, S., Loyola, R., Guzzo, F., … Tornielli, G. B. (2015). The Phenylpropanoid Pathway Is Controlled at Different Branches by a Set of R2R3-MYB C2 Repressors in Grapevine. Plant Physiology, 167(4), 1448-1470. doi:10.1104/pp.114.256172Cavanagh, C., Morell, M., Mackay, I., & Powell, W. (2008). From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Current Opinion in Plant Biology, 11(2), 215-221. doi:10.1016/j.pbi.2008.01.002Cebolla-Cornejo, J., Roselló, S., & Nuez, F. (2013). Phenotypic and genetic diversity of Spanish tomato landraces. Scientia Horticulturae, 162, 150-164. doi:10.1016/j.scienta.2013.07.044Čermák, T., Baltes, N. J., Čegan, R., Zhang, Y., & Voytas, D. F. (2015). High-frequency, precise modification of the tomato genome. Genome Biology, 16(1). doi:10.1186/s13059-015-0796-9Chaerle, L., Lenk, S., Leinonen, I., Jones, H. G., Van Der Straeten, D., & Buschmann, C. (2009). Multi-sensor plant imaging: Towards the development of a stress-catalogue. Biotechnology Journal, 4(8), 1152-1167. doi:10.1002/biot.200800242Chaïb, J., Lecomte, L., Buret, M., & Causse, M. (2006). Stability over genetic backgrounds, generations and years of quantitative trait locus (QTLs) for organoleptic quality in tomato. Theoretical and Applied Genetics, 112(5), 934-944. doi:10.1007/s00122-005-0197-7Chalhoub, B., Denoeud, F., Liu, S., Parkin, I. A. P., Tang, H., Wang, X., … Samans, B. (2014). Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 345(6199), 950-953. doi:10.1126/science.1253435Chappell, M. J., & LaValle, L. A. (2009). Food security and biodiversity: can we have both? An agroecological analysis. Agriculture and Human Values, 28(1), 3-26. doi:10.1007/s10460-009-9251-4Chen, G., Hackett, R., Walker, D., Taylor, A., Lin, Z., & Grierson, D. (2004). Identification of a Specific Isoform of Tomato Lipoxygenase (TomloxC) Involved in the Generation of Fatty Acid-Derived Flavor Compounds. Plant Physiology, 136(1), 2641-2651. doi:10.1104/pp.104.041608Chen, J., Wang, N., Fang, L.-C., Liang, Z.-C., Li, S.-H., & Wu, B.-H. (2015). Construction of a high-density genetic map and QTLs mapping for sugars and acids in grape berries. BMC Plant Biology, 15(1), 28. doi:10.1186/s12870-015-0428-2Chen, X., Chen, F., Chen, Y., Gao, Q., Yang, X., Yuan, L., … Mi, G. (2012). Modern maize hybrids in Northeast China exhibit increased yield potential and resource use efficiency despite adverse climate change. Global Change Biology, 19(3), 923-936. doi:10.1111/gcb.12093Coleman, C., Copetti, D., Cipriani, G., Hoffmann, S., Kozma, P., Kovacs, L., … Di Gaspero, G. (2009). The powdery mildew resistance gene REN1 co-segregates with an NBS-LRR gene cluster in two Central Asian grapevines. BMC Genetics, 10(1), 89. doi:10.1186/1471-2156-10-89Collard, B. C. Y., Jahufer, M. Z. Z., Brouwer, J. B., & Pang, E. C. K. (2005). An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica, 142(1-2), 169-196. doi:10.1007/s10681-005-1681-5Corrado, G., Piffanelli, P., Caramante, M., Coppola, M., & Rao, R. (2013). SNP genotyping reveals genetic diversity between cultivated landraces and contemporary varieties of tomato. BMC Genomics, 14(1), 835. doi:10.1186/1471-2164-14-835Czemmel, S., Stracke, R., Weisshaar, B., Cordon, N., Harris, N. N., Walker, A. R., … Bogs, J. (2009). The Grapevine R2R3-MYB Transcription Factor VvMYBF1 Regulates Flavonol Synthesis in Developing Grape Berries. Plant Physiology, 151(3), 1513-1530. doi:10.1104/pp.109.142059D’Ambrosio, C., Giorio, G., Marino, I., Merendino, A., Petrozza, A., Salfi, L., … Cellini, F. (2004). Virtually complete conversion of lycopene into β-carotene in fruits of tomato plants transformed with the tomato lycopene β-cyclase (tlcy-b) cDNA. Plant Science, 166(1), 207-214. doi:10.1016/j.plantsci.2003.09.015D’Ambrosio, C., Stigliani, A. L., & Giorio, G. (2010). Overexpression of CrtR-b2 (carotene beta hydroxylase 2) from S. lycopersicum L. differentially affects xanthophyll synthesis and accumulation in transgenic tomato plants. Transgenic Research, 20(1), 47-60. doi:10.1007/s11248-010-9387-4D’Esposito, D., Ferriello, F., Molin, A. D., Diretto, G., Sacco, A., Minio, A., … Ercolano, M. R. (2017). Unraveling the complexity of transcriptomic, metabolomic and quality environmental response of tomato fruit. BMC Plant Biology, 17(1). doi:10.1186/s12870-017-1008-4Paula de Toledo Thomazella, D., Brail, Q., Dahlbeck, D., & Staskawicz, B. (2016). CRISPR-Cas9 mediated mutagenesis of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. doi:10.1101/064824De Vos, R. C., Moco, S., Lommen, A., Keurentjes, J. J., Bino, R. J., & Hall, R. D. (2007). Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nature Protocols, 2(4), 778-791. doi:10.1038/nprot.2007.95Deery, D., Jimenez-Berni, J., Jones, H., Sirault, X., & Furbank, R. (2014). Proximal Remote Sensing Buggies and Potential Applications for Field-Based Phenotyping. Agronomy, 4(3), 349-379. doi:10.3390/agronomy4030349Degu, A., Hochberg, U., Sikron, N., Venturini, L., Buson, G., Ghan, R., … Fait, A. (2014). Metabolite and transcript profiling of berry skin during fruit development elucidates differential regulation between Cabernet Sauvignon and Shiraz cultivars at branching points in the polyphenol pathway. BMC Plant Biology, 14(1). doi:10.1186/s12870-014-0188-4Deluc, L., Barrieu, F., Marchive, C., Lauvergeat, V., Decendit, A., Richard, T., … Hamdi, S. (2005). Characterization of a Grapevine R2R3-MYB Transcription Factor That Regulates the Phenylpropanoid Pathway. Plant Physiology, 140(2), 499-511. doi:10.1104/pp.105.067231Deluc, L., Bogs, J., Walker, A. R., Ferrier, T., Decendit, A., Merillon, J.-M., … Barrieu, F. (2008). The Transcription Factor VvMYB5b Contributes to the Regulation of Anthocyanin and Proanthocyanidin Biosynthesis in Developing Grape Berries. Plant Physiology, 147(4), 2041-2053. doi:10.1104/pp.108.118919Deytieux, C., Geny, L., Lapaillerie, D., Claverol, S., Bonneu, M., & Doneche, B. (2007). Proteome analysis of grape skins during ripening. Journal of Experimental Botany, 58(7), 1851-1862. doi:10.1093/jxb/erm049Dharmapuri, S., Rosati, C., Pallara, P., Aquilani, R., Bouvier, F., Camara, B., & Giuliano, G. (2002). Metabolic engineering of xanthophyll content in tomato fruits. FEBS Letters, 519(1-3), 30-34. doi:10.1016/s0014-5793(02)02699-6Diaz de la Garza, R. I., Gregory, J. F., & Hanson, A. D. (2007). Folate biofortification of tomato fruit. Proceedings of the National Academy of Sciences, 104(10), 4218-4222. doi:10.1073/pnas.0700409104Doligez, A., Bertrand, Y., Farnos, M., Grolier, M., Romieu, C., Esnault, F., … This, P. (2013). New stable QTLs for berry weight do not colocalize with QTLs for seed traits in cultivated grapevine (Vitis vinifera L.). BMC Plant Biology, 13(1), 217. doi:10.1186/1471-2229-13-217Doucleff, M., Jin, Y., Gao, F., Riaz, S., Krivanek, A. F., & Walker, M. A. (2004). A genetic linkage map of grape, utilizing Vitis rupestris and Vitis arizonica. Theoretical and Applied Genetics, 109(6), 1178-1187. doi:10.1007/s00122-004-1728-3Dresbøll, D. B., Thorup-Kristensen, K., McKenzie, B. M., Dupuy, L. X., & Bengough, A. G. (2013). Timelapse scanning reveals spatial variation in tomato (Solanum lycopersicum L.) root elongation rates during partial waterlogging. Plant and Soil, 369(1-2), 467-477. doi:10.1007/s11104-013-1592-5Duchêne, E., Butterlin, G., Dumas, V., & Merdinoglu, D. (2011). Towards the adaptation of grapevine varieties to climate change: QTLs and candidate genes for developmental stages. Theoretical and Applied Genetics, 124(4), 623-635. doi:10.1007/s00122-011-1734-1Eitel, J. U. H., Vierling, L. A., Long, D. S., & Hunt, E. R. (2011). Early season remote sensing of wheat nitrogen status using a green scanning laser. Agricultural and Forest Meteorology, 151(10), 1338-1345. doi:10.1016/j.agrformet.2011.05.015Elizondo, R., & Oyanedel, E. (2010). Field Testing of Tomato Chilling Tolerance under Varying Light and Temperature Conditions. Chilean journal of agricultural research, 70(4), 552-558. doi:10.4067/s0718-58392010000400004Etalo, D. W., Stulemeijer, I. J. E., Peter van Esse, H., de Vos, R. C. H., Bouwmeester, H. J., & Joosten, M. H. A. J. (2013). System-Wide Hypersensitive Response-Associated Transcriptome and Metabolome Reprogramming in Tomato. PLANT PHYSIOLOGY, 162(3), 1599-1617. doi:10.1104/pp.113.217471Fahlgren, N., Gehan, M. A., & Baxter, I. (2015). Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Current Opinion in Plant Biology, 24, 93-99. doi:10.1016/j.pbi.2015.02.006Fantini, E., Falcone, G., Frusciante, S., Giliberto, L., & Giuliano, G. (2013). Dissection of Tomato Lycopene Biosynthesis through Virus-Induced Gene Silencing. PLANT PHYSIOLOGY, 163(2), 986-998. doi:10.1104/pp.113.224733Feechan, A., Anderson, C., Torregrosa, L., Jermakow, A., Mestre, P., Wiedemann-Merdinoglu, S.,
    corecore