2 research outputs found

    Depth Dependent Relationships between Temperature and Ocean Heterotrophic Prokaryotic Production

    Get PDF
    9 páginas, 2 figuras, 1 tabla.-- This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these termsCorrigendum: Depth Dependent Relationships between Temperature and Ocean Heterotrophic Prokaryotic Production, Frontiers in Marine Science 4: 91 (2017) https://doi.org/10.3389/fmars.2017.00091Marine prokaryotes play a key role in cycling of organic matter and nutrients in the ocean. Using a unique dataset (>14,500 samples), we applied a space-for-time substitution analysis to assess the temperature dependence of prokaryotic heterotrophic production (PHP) in epi- (0–200 m), meso- (201–1000 m) and bathypelagic waters (1001–4000 m) of the global ocean. Here, we show that the temperature dependence of PHP is fundamentally different between these major oceanic depth layers, with an estimated ecosystem-level activation energy (Ea) of 36 ± 7 kJ mol−1 for the epipelagic, 72 ± 15 kJ mol−1 for the mesopelagic and 274 ± 65 kJ mol−1 for the bathypelagic realm. We suggest that the increasing temperature dependence with depth is related to the parallel vertical gradient in the proportion of recalcitrant organic compounds. These Ea predict an increased PHP of about 5, 12, and 55% in the epi-, meso-, and bathypelagic ocean, respectively, in response to a water temperature increase by 1°C. Hence, there is indication that a major thus far underestimated feedback mechanism exists between future bathypelagic ocean warming and heterotrophic prokaryotic activityFinancial support for this project was provided by the Australian Institute of Marine Science (AIMS) and a grant from the Carlsberg Foundation to CL. XA, XM and JG were funded by the Malaspina expedition 2010 (grant n° CSD2008–00077) and HOTMIX (grant n° CTM2011–30010–C02–02) projects. TR was supported by the PADOM project (Austrian Science Fund grant n° P23221-B11). GH was funded by the Austrian Science Fund (FWF) project I486-B09 and by the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 268595 (MEDEA project).Peer reviewe

    Depth Dependent Relationships between Temperature and Ocean Heterotrophic Prokaryotic Production

    No full text
    Marine prokaryotes play a key role in cycling of organic matter and nutrients in the ocean. Using a unique dataset (>14,500 samples), we applied a space-for-time substitution analysis to assess the temperature dependence of prokaryotic heterotrophic production (PHP) in epi- (0–200 m), meso- (201–1000 m) and bathypelagic waters (1001–4000 m) of the global ocean. Here, we show that the temperature dependence of PHP is fundamentally different between these major oceanic depth layers, with an estimated ecosystem-level activation energy (Ea) of 36 ± 7 kJ mol−1 for the epipelagic, 72 ± 15 kJ mol−1 for the mesopelagic and 274 ± 65 kJ mol−1 for the bathypelagic realm. We suggest that the increasing temperature dependence with depth is related to the parallel vertical gradient in the proportion of recalcitrant organic compounds. These Ea predict an increased PHP of about 5, 12, and 55% in the epi-, meso-, and bathypelagic ocean, respectively, in response to a water temperature increase by 1°C. Hence, there is indication that a major thus far underestimated feedback mechanism exists between future bathypelagic ocean warming and heterotrophic prokaryotic activity
    corecore