1 research outputs found

    Seagrass Herbivory Levels Sustain Site- Fidelity in a Remnant Dugong Population

    Get PDF
    17 páginas, 5 figuras, 5 tablasHerds of dugong, a largely tropical marine megaherbivore, are known to undertake long-distance movements, sequentially overgrazing seagrass meadows in their path. Given their drastic declines in many regions, it is unclear whether at lower densities, their grazing is less intense, reducing their need to travel between meadows. We studied the effect of the feeding behaviour of a small dugong population in the Andaman and Nicobar archipelago, India to understand how small isolated populations graze seagrasses. In the seven years of our observation, all recorded dugongs travelled either solitarily or in pairs, and their use of seagrasses was limited to 8 meadows, some of which were persistently grazed. These meadows were relatively large, contiguous and dominated by short-lived seagrasses species. Dugongs consumed approximately 15% of meadow primary production, but there was a large variation (3–40% of total meadow production) in consumption patterns between meadows. The impact of herbivory was relatively high, with shoot densities c. 50% higher inside herbivore exclosures than in areas exposed to repeated grazing. Our results indicate that dugongs in the study area repeatedly graze the same meadows probably because the proportion of primary production consumed reduces shoot density to levels that are still above values that can trigger meadow abandonment. This ability of seagrasses to cope perhaps explains the long-term site fidelity shown by individual dugongs in these meadows. The fact that seagrass meadows in the archipelago are able to support dugong foraging requirements allows us to clearly identify locations where this remnant population persists, and where urgent management efforts can be directed.This work was supported by Ravi Sankaran Inlaks Fellowship Program, to ED; Mohammed Bin Zayed Species Conservation Fund, to ED; Ministry of Environment and Forests, CSIC under the PIE programme (Ref: 201330E062), to TAPeer reviewe
    corecore