3 research outputs found

    Calcium dynamics and resting transcriptional activity regulates prolactin gene expression

    Get PDF
    Producción CientíficaResearch on the regulation of hormone gene expression by calcium signaling is hampered by the difficulty of monitoring both parameters within the same individual, living cells. Here we achieved concurrent, dynamic measurements of both intracellular Ca2+ concentration ([Ca2+]i) and prolactin (PRL) gene promoter activity in single, living pituitary cells. Cells were transfected with the luciferase reporter gene under control of the PRL promoter and subjected to bioluminescence and fluorescence imaging before and after presentation of TSH-releasing hormone (TRH), a prototypic regulator of PRL secretion and gene expression that induces a transient Ca2+ release, followed by sustained Ca2+ influx. We found that cells displaying specific photonic emissions (i.e. mammotropes) showed heterogeneous calcium and transcriptional responses to TRH. Transcriptionally responsive cells always exhibited a TRH-induced [Ca2+]i increase. In addition, transcriptional responses were related to the rate of Ca2+ entry but not Ca2+ release. Finally, cells lacking transcriptional responses (but showing [Ca2+]i rises) exhibited larger levels of resting PRL promoter activity than transcriptionally responsive cells. Thus, our results suggest that the sustained entry of Ca2+ induced by TRH (but not the Ca2+ release) regulates transcriptional responsiveness. Superimposed on this regulation, the previous, resting PRL promoter activity also controls transcriptional responses.National Institutes of Health (grant DK-38215)Fondo de Investigaciones Sanitarias (grant FIS 01/0769

    Calcium dynamics and resting transcriptional activity regulates prolactin gene expression

    Get PDF
    7 páginas, 5 figuras.-- et al.Research on the regulation of hormone gene expression by calcium signaling is hampered by the difficulty of monitoring both parameters within the same individual, living cells. Here we achieved concurrent, dynamic measurements of both intracellular Ca2+ concentration ([Ca2+]i) and prolactin (PRL) gene promoter activity in single, living pituitary cells. Cells were transfected with the luciferase reporter gene under control of the PRL promoter and subjected to bioluminescence and fluorescence imaging before and after presentation of TSH-releasing hormone (TRH), a prototypic regulator of PRL secretion and gene expression that induces a transient Ca2+ release, followed by sustained Ca2+ influx. We found that cells displaying specific photonic emissions (i.e. mammotropes) showed heterogeneous calcium and transcriptional responses to TRH. Transcriptionally responsive cells always exhibited a TRH-induced [Ca2+]i increase. In addition, transcriptional responses were related to the rate of Ca2+ entry but not Ca2+ release. Finally, cells lacking transcriptional responses (but showing [Ca2+]i rises) exhibited larger levels of resting PRL promoter activity than transcriptionally responsive cells. Thus, our results suggest that the sustained entry of Ca2+ induced by TRH (but not the Ca2+ release) regulates transcriptional responsiveness. Superimposed on this regulation, the previous, resting PRL promoter activity also controls transcriptional responses.This work was supported by NIH Grant DK-38215 (to L.S.F. and F.R.B.) and a postdoctoral fellowship from the Ministerio de Educación y Cultura of Spain (to C.V.). Grant 01/0769 from Fondo de Investigaciones Sanitarias (FIS) of Spain (to C.V.) is gratefully acknowledged.Peer Reviewe
    corecore