2 research outputs found

    Exciton Control in a Room-Temperature Bulk Semiconductor with Coherent Strain Pulses

    Get PDF
    The coherent manipulation of excitons in bulk semiconductors via the lattice degrees of freedom is key to the development of acousto-optic and acousto-excitonic devices. Wide-bandgap transition metal oxides exhibit strongly bound excitons that are interesting for applications in the deep-ultraviolet, but their properties have remained elusive due to the lack of efficient generation and detection schemes in this spectral range. Here, we perform ultrafast broadband deep-ultraviolet spectroscopy on anatase TiO2_2 single crystals at room temperature, and reveal a dramatic modulation of the exciton peak amplitude due to coherent acoustic phonons. This modulation is comparable to those of nanostructures where exciton-phonon coupling is enhanced by quantum confinement, and is accompanied by a giant exciton shift of 30-50 meV. We model these results by many-body perturbation theory and show that the deformation potential coupling within the nonlinear regime is the main mechanism for the generation and detection of the coherent acoustic phonons. Our findings pave the way to the design of exciton control schemes in the deep-ultraviolet with propagating strain pulses

    Exciton control in a room temperature bulk semiconductor with coherent strain pulses

    Get PDF
    Controlling the excitonic optical properties of room temperature semiconductors using time-dependent perturbations is key to future optoelectronic applications. The optical Stark effect in bulk and low-dimensional materials has recently shown exciton shifts below 20 meV. Here, we demonstrate dynamical tuning of the exciton properties by photoinduced coherent acoustic phonons in the cheap and abundant wide-gap semiconductor anatase titanium dioxide (TiO2) in single crystalline form. The giant coupling between the excitons and the photoinduced strain pulses yields a room temperature exciton shift of 30 to 50 meV and a marked modulation of its oscillator strength. An advanced ab initio treatment of the exciton-phonon interaction fully accounts for these results, and shows that the deformation potential coupling underlies the generation and detection of the giant acoustic phonon modulations
    corecore