2 research outputs found

    Multiple displacement amplification as a pre-polymerase chain reaction (pre-PCR) to process difficult to amplify samples and low copy number sequences from natural environments

    No full text
    Microbial assessment of natural biodiversity is usually achieved through polymerase chain reaction (PCR) amplification. Deoxyribonucleic acid (DNA) sequences from natural samples are often difficult to amplify because of the presence of PCR inhibitors or to the low number of copies of specific sequences. In this study, we propose a non-specific preamplification procedure to overcome the presence of inhibitors and to increase the number of copies prior to carrying out standard amplification by PCR. The pre-PCR step is carried out through a multiple displacement amplification (MDA) technique using random hexamers as priming oligonucleotides and Φ29 DNA polymerase in an isothermal, whole-genome amplification reaction. Polymerase chain reaction amplification using specific priming oligonucleotides allows the selection of the sequences of interest after a preamplification reaction from complex environmental samples. The procedure (MDA-PCR) has been tested on a natural microbial community from a hypogean environment and laboratory assemblages of known bacterial species, in both cases targeting the small subunit ribosomal RNA gene sequences. Results from the natural community showed successful amplifications using the two steps protocol proposed in this study while standard, direct PCR amplification resulted in no amplification product. Amplifications from a laboratory assemblage by the two-step proposed protocol were successful at bacterial concentrations ≥ 10-fold lower than standard PCR. Amplifications carried out in the presence of different concentrations of fulvic acids (a soil humic fraction) by the MDA-PCR protocol generated PCR products at concentrations of fulvic acids over 10-fold higher than standard PCR amplifications. The proposed procedure (MDA-PCR) opens the possibility of detecting sequences represented at very low copy numbers, to work with minute samples, as well as to reduce the negative effects on PCR amplifications of some inhibitory substances commonly found in environmental samples.The authors acknowledge the support through projects REN2002-00041, REN2003-02854 and BTE2002-04492- C02-01 from the Spanish Ministry of Education and Science (MEC). J.M. Gonzalez also thanks the support from the MEC through the Ramón y Cajal program.Peer reviewe
    corecore