4 research outputs found

    Challenges of viticulture adaptation to global change: tackling the issue from the roots

    Get PDF
    Viticulture is facing emerging challenges not only because of the effect of climate change on yield and composition of grapes, but also of a social demand for environmental-friendly agricultural management. Adaptation to these challenges is essential to guarantee the sustainability of viticulture. The aim of this review is to present adaptation possibilities from the soil-hidden, and often disregarded, part of the grapevine, the roots. The complexity of soil-root interactions makes necessary a comprehensive approach taking into account physiology, pathology and genetics, in order to outline strategies to improve viticulture adaptation to current and future threats. Rootstocks are the link between soil and scion in grafted crops, and they have played an essential role in viticulture since the introduction of phylloxera into Europe at the end of the 19th century. This review outlines current and future challenges that are threatening the sustainability of the wine sector and the relevant role that rootstocks can play to face these threats. We describe how rootstocks along with soil management can be exploited as an essential tool to deal with the effects of climate change and of emerging soil-borne pests and pathogens. Moreover, we discuss the possibilities and limitations of diverse genetic strategies for rootstock breeding.This work is framed in the networking activities of RedVitis (AGL2015-70931-REDT) and RedVitis 2.0 (AGL2017-90759-REDT), funded by the State Research Agency (AEI) of the Spanish Ministry of Science and Innovation. Ms Diana Marin is beneficiary of postgraduate scholarship funded by Universidad Publica de Navarra (FPI-UPNA-2016). Dr Juan Emilio Palomares-Rius acknowledges the State Research Agency (AEI) of the Spanish Ministry of Science and Innovation for the 'Ramon y Cajal' Fellowship RYC-2017-22228 and Dr David Gramaje acknowledges Spanish Ministry of Economy and Competitiveness for the 'Ramon y Cajal' Fellowship RYC-2017-23098

    Challenges of viticulture adaptation to global change: tackling the issue from the roots

    Get PDF
    [EN] Viticulture is facing emerging challenges not only because of the effect of climate change on yield and composition of grapes, but also of a social demand for environmental-friendly agricultural management. Adaptation to these challenges is essential to guarantee the sustainability of viticulture. The aim of this review is to present adaptation possibilities from the soil-hidden, and often disregarded, part of the grapevine, the roots. The complexity of soil-root interactions makes necessary a comprehensive approach taking into account physiology, pathology and genetics, in order to outline strategies to improve viticulture adaptation to current and future threats. Rootstocks are the link between soil and scion in grafted crops, and they have played an essential role in viticulture since the introduction of phylloxera into Europe at the end of the 19th century. This review outlines current and future challenges that are threatening the sustainability of the wine sector and the relevant role that rootstocks can play to face these threats. We describe how rootstocks along with soil management can be exploited as an essential tool to deal with the effects of climate change and of emerging soil-borne pests and pathogens. Moreover, we discuss the possibilities and limitations of diverse genetic strategies for rootstock breeding.This work is framed in the networking activities of RedVitis (AGL2015-70931-REDT) and RedVitis 2.0 (AGL2017-90759-REDT), funded by the State Research Agency (AEI) of the Spanish Ministry of Science and Innovation. Ms Diana Marin is beneficiary of postgraduate scholarship funded by Universidad Publica de Navarra (FPI-UPNA-2016). Dr Juan Emilio Palomares-Rius acknowledges the State Research Agency (AEI) of the Spanish Ministry of Science and Innovation for the 'Ramon y Cajal' Fellowship RYC-2017-22228 and Dr David Gramaje acknowledges Spanish Ministry of Economy and Competitiveness for the 'Ramon y Cajal' Fellowship RYC-2017-23098.Marín, D.; Armengol Fortí, J.; Carbonell-Bejerano, P.; Escalona, J.; Gramaje Pérez, D.; Hernández-Montes, E.; Intrigliolo, DS.... (2021). Challenges of viticulture adaptation to global change: tackling the issue from the roots. Australian Journal of Grape and Wine Research. 27(1):8-25. https://doi.org/10.1111/ajgw.12463S825271AGÜERO, C. B., URATSU, S. L., GREVE, C., POWELL, A. L. T., LABAVITCH, J. M., MEREDITH, C. P., & DANDEKAR, A. M. (2005). Evaluation of tolerance to Pierce’s disease andBotrytisin transgenic plants ofVitis viniferaL. expressing the pear PGIP gene. Molecular Plant Pathology, 6(1), 43-51. doi:10.1111/j.1364-3703.2004.00262.xAgustí-Brisach, C., Mostert, L., & Armengol, J. (2013). Detection and quantification ofIlyonectriaspp. associated with black-foot disease of grapevine in nursery soils using multiplex nested PCR and quantitative PCR. Plant Pathology, 63(2), 316-322. doi:10.1111/ppa.12093Agustí-Brisach, C., Gramaje, D., García-Jiménez, J., & Armengol, J. (2013). Detection of black-foot disease pathogens in the grapevine nursery propagation process in Spain. European Journal of Plant Pathology, 137(1), 103-112. doi:10.1007/s10658-013-0221-8Alaniz, S., García-Jiménez, J., Abad-Campos, P., & Armengol, J. (2010). Susceptibility of grapevine rootstocks to Cylindrocarpon liriodendri and C. macrodidymum. Scientia Horticulturae, 125(3), 305-308. doi:10.1016/j.scienta.2010.04.009Alaniz, S., Armengol, J., León, M., García-Jiménez, J., & Abad-Campos, P. (2009). Analysis of genetic and virulence diversity of Cylindrocarpon liriodendri and C. macrodidymum associated with black foot disease of grapevine. Mycological Research, 113(1), 16-23. doi:10.1016/j.mycres.2008.07.002Albacete, A., Martinez-Andujar, C., Martinez-Perez, A., Thompson, A. J., Dodd, I. C., & Perez-Alfocea, F. (2015). Unravelling rootstockxscion interactions to improve food security. Journal of Experimental Botany, 66(8), 2211-2226. doi:10.1093/jxb/erv027Aragüés, R., Medina, E. T., Zribi, W., Clavería, I., Álvaro-Fuentes, J., & Faci, J. (2014). Soil salinization as a threat to the sustainability of deficit irrigation under present and expected climate change scenarios. Irrigation Science, 33(1), 67-79. doi:10.1007/s00271-014-0449-xBarrios-Masias, F. H., Knipfer, T., Walker, M. A., & McElrone, A. J. (2019). Differences in hydraulic traits of grapevine rootstocks are not conferred to a common Vitis vinifera scion. Functional Plant Biology, 46(3), 228. doi:10.1071/fp18110Bavaresco, L., Gardiman, M., Brancadoro, L., Espen, L., Failla, O., Scienza, A., … Testolin, R. (2015). Grapevine breeding programs in Italy. Grapevine Breeding Programs for the Wine Industry, 135-157. doi:10.1016/b978-1-78242-075-0.00007-7Berdeja, M., Nicolas, P., Kappel, C., Dai, Z. W., Hilbert, G., Peccoux, A., … Delrot, S. (2015). Water limitation and rootstock genotype interact to alter grape berry metabolism through transcriptome reprogramming. Horticulture Research, 2(1). doi:10.1038/hortres.2015.12Bert, P.-F., Bordenave, L., Donnart, M., Hévin, C., Ollat, N., & Decroocq, S. (2012). Mapping genetic loci for tolerance to lime-induced iron deficiency chlorosis in grapevine rootstocks (Vitis sp.). Theoretical and Applied Genetics, 126(2), 451-473. doi:10.1007/s00122-012-1993-5Bianchi, D., Grossi, D., Tincani, D. T. G., Simone Di Lorenzo, G., Brancadoro, L., & Rustioni, L. (2018). Multi-parameter characterization of water stress tolerance in Vitis hybrids for new rootstock selection. Plant Physiology and Biochemistry, 132, 333-340. doi:10.1016/j.plaphy.2018.09.018Bonada, M., Jeffery, D. W., Petrie, P. R., Moran, M. A., & Sadras, V. O. (2015). Impact of elevated temperature and water deficit on the chemical and sensory profiles of Barossa Shiraz grapes and wines. Australian Journal of Grape and Wine Research, 21(2), 240-253. doi:10.1111/ajgw.12142Borie, B., Jacquiot, L., Jamaux-Despréaux, I., Larignon, P., & Péros, J.-P. (2002). Genetic diversity in populations of the fungiPhaeomoniella chlamydosporaandPhaeoacremonium aleophilumon grapevine in France. Plant Pathology, 51(1), 85-96. doi:10.1046/j.0032-0862.2001.658.xBravdo, B. (2012). EFFECTS OF SALINITY AND IRRIGATION WITH DESALINATED EFFLUENT AND SEA WATER ON PRODUCTION AND FRUIT QUALITY OF GRAPEVINES (REVIEW AND UPDATE). Acta Horticulturae, (931), 245-258. doi:10.17660/actahortic.2012.931.27Brown, D. S., Jaspers, M. V., Ridgway, H. J., Barclay, C. J., & Jones, E. E. (2013). Susceptibility of four grapevine rootstocks to Cylindrocladiella parva. New Zealand Plant Protection, 66, 249-253. doi:10.30843/nzpp.2013.66.5675Brunori, E., Farina, R., & Biasi, R. (2016). Sustainable viticulture: The carbon-sink function of the vineyard agro-ecosystem. Agriculture, Ecosystems & Environment, 223, 10-21. doi:10.1016/j.agee.2016.02.012Cabral, A., Rego, C., Nascimento, T., Oliveira, H., Groenewald, J. Z., & Crous, P. W. (2012). Multi-gene analysis and morphology reveal novel Ilyonectria species associated with black foot disease of grapevines. Fungal Biology, 116(1), 62-80. doi:10.1016/j.funbio.2011.09.010Carbonell-Bejerano, P., Santa María, E., Torres-Pérez, R., Royo, C., Lijavetzky, D., Bravo, G., … Martínez-Zapater, J. M. (2013). Thermotolerance Responses in Ripening Berries of Vitis vinifera L. cv Muscat Hamburg. Plant and Cell Physiology, 54(7), 1200-1216. doi:10.1093/pcp/pct071Carneiro, R., Randig, O., Almeida, M. R., & Gomes, A. C. (2004). Additional information on Meloidogyne ethiopica Whitehead, 1968 (Tylenchida: Meloidogynidae), a root-knot nematode parasitising kiwi fruit and grape-vine from Brazil and Chile. Nematology, 6(1), 109-123. doi:10.1163/156854104323072982Castellarin, S. D., Matthews, M. A., Di Gaspero, G., & Gambetta, G. A. (2007). Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta, 227(1), 101-112. doi:10.1007/s00425-007-0598-8Chaverri, P., Salgado, C., Hirooka, Y., Rossman, A. Y., & Samuels, G. J. (2011). Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and related genera with Cylindrocarpon-like anamorphs. Studies in Mycology, 68, 57-78. doi:10.3114/sim.2011.68.03Chaves, M. M., Zarrouk, O., Francisco, R., Costa, J. M., Santos, T., Regalado, A. P., … Lopes, C. M. (2010). Grapevine under deficit irrigation: hints from physiological and molecular data. Annals of Botany, 105(5), 661-676. doi:10.1093/aob/mcq030Chitarra, W., Perrone, I., Avanzato, C. G., Minio, A., Boccacci, P., Santini, D., … Gambino, G. (2017). Grapevine Grafting: Scion Transcript Profiling and Defense-Related Metabolites Induced by Rootstocks. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.00654Clark, J. R., & Finn, C. E. (2010). Register of New Fruit and Nut Cultivars List 45. HortScience, 45(5), 716-756. doi:10.21273/hortsci.45.5.716Clingeleffer, P., Morales, N., Davis, H., & Smith, H. (2019). The significance of scion × rootstock interactions. OENO One, 53(2). doi:10.20870/oeno-one.2019.53.2.2438COMAS, L. H., BAUERLE, T. L., & EISSENSTAT, D. M. (2010). Biological and environmental factors controlling root dynamics and function: effects of root ageing and soil moisture. Australian Journal of Grape and Wine Research, 16, 131-137. doi:10.1111/j.1755-0238.2009.00078.xComas, L. H., Anderson, L. J., Dunst, R. M., Lakso, A. N., & Eissenstat, D. M. (2005). Canopy and environmental control of root dynamics in a long‐term study of Concord grape. New Phytologist, 167(3), 829-840. doi:10.1111/j.1469-8137.2005.01456.xComont, G., Corio-Costet, M.-F., Larignon, P., & Delmotte, F. (2010). AFLP markers reveal two genetic groups in the French population of the grapevine fungal pathogen Phaeomoniella chlamydospora. European Journal of Plant Pathology, 127(4), 451-464. doi:10.1007/s10658-010-9611-3Corso, M., & Bonghi, C. (2014). Grapevine rootstock effects on abiotic stress tolerance. Plant Science Today, 1(3), 108-113. doi:10.14719/pst.2014.1.3.64Corso, M., Vannozzi, A., Maza, E., Vitulo, N., Meggio, F., Pitacco, A., … Lucchin, M. (2015). Comprehensive transcript profiling of two grapevine rootstock genotypes contrasting in drought susceptibility links the phenylpropanoid pathway to enhanced tolerance. Journal of Experimental Botany, 66(19), 5739-5752. doi:10.1093/jxb/erv274Costa, J. M., Vaz, M., Escalona, J., Egipto, R., Lopes, C., Medrano, H., & Chaves, M. M. (2016). Modern viticulture in southern Europe: Vulnerabilities and strategies for adaptation to water scarcity. Agricultural Water Management, 164, 5-18. doi:10.1016/j.agwat.2015.08.021Cousins, P. (2005). Rootstock Breeding: An Analysis of Intractability. HortScience, 40(7), 1945-1946. doi:10.21273/hortsci.40.7.1945Cramer W. Guiot J.andMarini K.(2019)MedECC booklet: risks associated to climate and environmental changes in the Mediterranean region. A preliminary assessment by the MedECC Network Science‐policy interface.https://www.medecc.org/wp-content/uploads/2018/12/MedECC-Booklet_EN_WEB.pdfCummins, J. N., & Aldwinckle, H. S. (1995). Breeding rootstocks for tree fruit crops. New Zealand Journal of Crop and Horticultural Science, 23(4), 395-402. doi:10.1080/01140671.1995.9513915Davies, W. J., Kudoyarova, G., & Hartung, W. (2005). Long-distance ABA Signaling and Its Relation to Other Signaling Pathways in the Detection of Soil Drying and the Mediation of the Plant’s Response to Drought. Journal of Plant Growth Regulation, 24(4). doi:10.1007/s00344-005-0103-1Degu, A., Morcia, C., Tumino, G., Hochberg, U., Toubiana, D., Mattivi, F., … Fait, A. (2015). Metabolite profiling elucidates communalities and differences in the polyphenol biosynthetic pathways of red and white Muscat genotypes. Plant Physiology and Biochemistry, 86, 24-33. doi:10.1016/j.plaphy.2014.11.006Delrot, S., Grimplet, J., Carbonell-Bejerano, P., Schwandner, A., Bert, P.-F., Bavaresco, L., … Vezzulli, S. (2020). Genetic and Genomic Approaches for Adaptation of Grapevine to Climate Change. Genomic Designing of Climate-Smart Fruit Crops, 157-270. doi:10.1007/978-3-319-97946-5_7Demangeat, G., Voisin, R., Minot, J.-C., Bosselut, N., Fuchs, M., & Esmenjaud, D. (2005). Survival of Xiphinema index in Vineyard Soil and Retention of Grapevine fanleaf virus Over Extended Time in the Absence of Host Plants. Phytopathology®, 95(10), 1151-1156. doi:10.1094/phyto-95-1151Downton, W. (1977). Photosynthesis in Salt-Stressed Grapevines. Functional Plant Biology, 4(2), 183. doi:10.1071/pp9770183Dutt, M., Li, Z. T., Kelley, K. T., Dhekney, S. A., Van Aman, M., Tattersall, J., & Gray, D. J. (2007). TRANSGENIC ROOTSTOCK PROTEIN TRANSMISSION IN GRAPEVINES. Acta Horticulturae, (738), 749-754. doi:10.17660/actahortic.2007.738.99Eissenstat, D. M., Bauerle, T. L., Comas, L. H., Lakso, A. N., Neilsen, D., Neilsen, G. H., & Smart, D. R. (2006). SEASONAL PATTERNS OF ROOT GROWTH IN RELATION TO SHOOT PHENOLOGY IN GRAPE AND APPLE. Acta Horticulturae, (721), 21-26. doi:10.17660/actahortic.2006.721.1ESCALONA, J. M., TOMÀS, M., MARTORELL, S., MEDRANO, H., RIBAS-CARBO, M., & FLEXAS, J. (2012). Carbon balance in grapevines under different soil water supply: importance of whole plant respiration. Australian Journal of Grape and Wine Research, 18(3), 308-318. doi:10.1111/j.1755-0238.2012.00193.xEsmenjaud, D., & Bouquet, A. (2009). Selection and Application of Resistant Germplasm for Grapevine Nematodes Management. Integrated Management of Fruit Crops Nematodes, 195-214. doi:10.1007/978-1-4020-9858-1_8Fahrentrapp, J., Müller, L., & Schumacher, P. (2015). Is there need for leaf-galling grape phylloxera control? Presence and distribution ofDactulosphaira vitifoliaein Swiss vineyards. International Journal of Pest Management, 61(4), 340-345. doi:10.1080/09670874.2015.1067734FLEXAS, J., GALMÃ S, J., GALLÃ , A., GULÃ AS, J., POU, A., RIBAS-CARBO, M., … MEDRANO, H. (2010). Improving water use efficiency in grapevines: potential physiological targets for biotechnological improvement. Australian Journal of Grape and Wine Research, 16, 106-121. doi:10.1111/j.1755-0238.2009.00057.xFort, K. P., Heinitz, C. C., & Walker, M. A. (2015). Chloride exclusion patterns in six grapevine populations. Australian Journal of Grape and Wine Research, 21(1), 147-155. doi:10.1111/ajgw.12125Foundation Plant Services(2020) Grape Variery: RS‐2. Grape program at Foundation Plant Services.https://fps.ucdavis.edu/Fraga, H., Malheiro, A. C., Moutinho‐Pereira, J., & Santos, J. A. (2012). An overview of climate change impacts on European viticulture. Food and Energy Security, 1(2), 94-110. doi:10.1002/fes3.14Franck, N., Morales, J. P., Arancibia‐Avendaño, D., García de Cortázar, V., Perez‐Quezada, J. F., Zurita‐Silva, A., & Pastenes, C. (2011). Seasonal fluctuations in Vitis vinifera root respiration in the field. New Phytologist, 192(4), 939-951. doi:10.1111/j.1469-8137.2011.03860.xFu, Q., Tan, Y., Zhai, H., & Du, Y. (2019). Evaluation of salt resistance mechanisms of grapevine hybrid rootstocks. Scientia Horticulturae, 243, 148-158. doi:10.1016/j.scienta.2018.07.034Funes, I., Savé, R., Rovira, P., Molowny-Horas, R., Alcañiz, J. M., Ascaso, E., … Vayreda, J. (2019). Agricultural soil organic carbon stocks in the north-eastern Iberian Peninsula: Drivers and spatial variability. Science of The Total Environment, 668, 283-294. doi:10.1016/j.scitotenv.2019.02.317Galbignani, M., Merli, M. C., Magnanini, E., Bernizzoni, F., Talaverano, I., Gatti, M., … Poni, S. (2016). Gas exchange and water-use efficiency of cv. Sangiovese grafted to rootstocks of varying water-deficit tolerance. Irrigation Science, 34(2), 105-116. doi:10.1007/s00271-016-0490-zGambetta, G. A., Manuck, C. M., Drucker, S. T., Shaghasi, T., Fort, K., Matthews, M. A., … McElrone, A. J. (2012). The relationship between root hydraulics and scion vigour across Vitis rootstocks: what role do root aquaporins play? Journal of Experimental Botany, 63(18), 6445-6455. doi:10.1093/jxb/ers312Geier, T., Eimert, K., Scherer, R., & Nickel, C. (2008). Production and rooting behaviour of rolB-transgenic plants of grape rootstock ‘Richter 110’ (Vitis berlandieri × V. rupestris). Plant Cell, Tissue and Organ Culture, 94(3), 269-280. doi:10.1007/s11240-008-9352-6Girollet, N., Rubio, B., Lopez-Roques, C., Valière, S., Ollat, N., & Bert, P.-F. (2019). De novo phased assembly of the Vitis riparia grape genome. Scientific Data, 6(1). doi:10.1038/s41597-019-0133-3Gómez, J., Lasanta, C., Palacios-Santander, J. M., & Cubillana-Aguilera, L. M. (2015). Chemical modeling for pH prediction of acidified musts with gypsum and tartaric acid in warm regions. Food Chemistry, 168, 218-224. doi:10.1016/j.foodchem.2014.07.058Gong, H., Blackmore, D., Clingeleffer, P., Sykes, S., Jha, D., Tester, M., & Walker, R. (2010). Contrast in chloride exclusion between two grapevine genotypes and its variation in their hybrid progeny. Journal of Experimental Botany, 62(3), 989-999. doi:10.1093/jxb/erq326Gramaje, D., & Armengol, J. (2011). Fungal Trunk Pathogens in the Grapevine Propagation Process: Potential Inoculum Sources, Detection, Identification, and Management Strategies. Plant Disease, 95(9), 1040-1055. doi:10.1094/pdis-01-11-0025Gramaje, D., Armengol, J., & Ridgway, H. J. (2012). Genetic and virulence diversity, and mating type distribution of Togninia minima causing grapevine trunk diseases in Spain. European Journal of Plant Pathology, 135(4), 727-743. doi:10.1007/s10658-012-0110-6Gramaje, D., García-Jiménez, J., & Armengol, J. (2010). Field Evaluation of Grapevine Rootstocks Inoculated with Fungi Associated with Petri Disease and Esca. American Journal of Enology and Viticulture, 61(4), 512-520. doi:10.5344/ajev.2010.10021Gramaje, D., Úrbez-Torres, J. R., & Sosnowski, M. R. (2018). Managing Grapevine Trunk Diseases With Respect to Etiology and Epidemiology: Current Strategies and Future Prospects. Plant Disease, 102(1), 12-39. doi:10.1094/pdis-04-17-0512-feGramaje, D., Mostert, L., Groenewald, J. Z., & Crous, P. W. (2015). Phaeoacremonium: From esca disease to phaeohyphomycosis. Fungal Biology, 119(9), 759-783. doi:10.1016/j.funbio.2015.06.004Gramaje, D., León, M., Santana, M., Crous, P. W., & Armengol, J. (2014). Multilocus ISSR Markers Reveal Two Major Genetic Groups in Spanish and South African Populations of the Grapevine Fungal Pathogen Cadophora luteo-olivacea. PLoS ONE, 9(10), e110417. doi:10.1371/journal.pone.0110417Granett, J., Walker, M. A., Kocsis, L., & Omer, A. D. (2001). BIOLOGY AND MANAGEMENT OF GRAPE PHYLLOXERA. Annual Review of Entomology, 46(1), 387-412. doi:10.1146/annurev.ento.46.1.387Gubler, W. D., Baumgartner, K., Browne, G. T., Eskalen, A., Latham, S. R., Petit, E., & Bayramian, L. A. (2004). Root diseases of grapevines in California and their control. Australasian Plant Pathology, 33(2), 157. doi:10.1071/ap04019Gullo, G., Dattola, A., Vonella, V., & Zappia, R. (2018). Evaluation of water relation parameters in vitis rootstocks with different drought tolerance and their effects on growth of a grafted cultivar. Journal of Plant Physiology, 226, 172-178. doi:10.1016/j.jplph.2018.04.013Haider, M. S., Jogaiah, S., Pervaiz, T., Yanxue, Z., Khan, N., & Fang, J. (2019). Physiological and transcriptional variations inducing complex adaptive mechanisms in grapevine by salt stress. Environmental and Experimental Botany, 162, 455-467. doi:10.1016/j.envexpbot.2019.03.022Hajdu, E. (2015). Grapevine breeding in Hungary. Grapevine Breeding Programs for the Wine Industry, 103-134. doi:10.1016/b978-1-78242-075-0.00006-5Harbertson, J. F., & Keller, M. (2011). Rootstock Effects on Deficit-Irrigated Winegrapes in a Dry Climate: Grape and Wine Composition. American Journal of Enology and Viticulture, 63(1), 40-48. doi:10.5344/ajev.2011.11079Haywood, V., Yu, T.-S., Huang, N.-C., & Lucas, W. J. (2005). Phloem long-distance trafficking of GIBBERELLIC ACID-INSENSITIVE RNA regulates leaf development. The Plant Journal, 42(1), 49-68. doi:10.1111/j.1365-313x.2005.02351.xHe, F., Mu, L., Yan, G.-L., Liang, N.-N., Pan, Q.-H., Wang, J., … Duan, C.-Q. (2010). Biosynthesis of Anthocyanins and Their Regulation in Colored Grapes. Molecules, 15(12), 9057-9091. doi:10.3390/molecules15129057He, R., Zhuang, Y., Cai, Y., Agüero, C. B., Liu, S., Wu, J., … Zhang, Y. (2018). Overexpression of 9-cis-Epoxycarotenoid Dioxygenase Cisgene in Grapevine Increases Drought Tolerance and Results in Pleiotropic Effects. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.00970Heinitz, C. C., Riaz, S., Tenscher, A. C., Romero, N., & Walker, M. A. (2020). Survey of chloride exclusion in grape germplasm from the southwestern United States and Mexico. Crop Science, 60(4), 1946-1956. doi:10.1002/csc2.20085Hemmer, C., Djennane, S., Ackerer, L., Hleibieh, K., Marmonier, A., Gersch, S., … Ritzenthaler, C. (2017). Nanobody-mediated resistance to Grapevine fanleaf virus in plants. Plant Biotechnology Journal, 16(2), 660-671. doi:10.1111/pbi.12819Henderson, S. W., Baumann, U., Blackmore, D. H., Walker, A. R., Walker, R. R., & Gilliham, M. (2014). Shoot chloride exclusion and salt tolerance in grapevine is associated with differential ion transporter expression in roots. BMC Plant Biology, 14(1). doi:10.1186/s12870-014-0273-8Henderson, S. W., Dunlevy, J. D., Wu, Y., Blackmore, D. H., Walker, R. R., Edwards, E. J., … Walker, A. R. (2017). Functional differences in transport properties of natural HKT 1;1 variants influence shoot Na + exclusion in grapevine rootstocks. New Phytologist, 217(3), 1113-1127. doi:10.1111/nph.14888Hernández-Montes, E., Escalona, J. M., Tomás, M., & Medrano, H. (2017). Influence of water availability and grapevine phenological stage on the spatial variation in soil respiration. Australian Journal of Grape and Wine Research, 23(2), 273-279. doi:10.1111/ajgw.12279De Herralde, F., Sa
    corecore