2 research outputs found

    Exploring two-spin internal linear combinations for the recovery of the CMB polarization

    Get PDF
    We present a methodology to recover cosmic microwave background (CMB) polarization in which the quantity P=Q+iUP = Q+ iU is linearly combined at different frequencies using complex coefficients. This is the most general linear combination of the QQ and UU Stokes parameters which preserves the physical coherence of the residual contribution on the CMB estimation. The approach is applied to the internal linear combination (ILC) and the internal template fitting (ITF) methodologies. The variance of PP of the resulting map is minimized to compute the coefficients of the linear combination. One of the key aspects of this procedure is that it serves to account for a global frequency-dependent shift of the polarization phase. Although in the standard case, in which no global E-B transference depending on frequency is expected in the foreground components, minimizing P2\left\langle |P|^2\right\rangle is similar to minimizing Q2\left\langle Q^2\right\rangle and U2\left\langle U^2\right\rangle separately (as previous methodologies proceed), multiplying QQ and UU by different coefficients induces arbitrary changes in the polarization angle and it does not preserve the coherence between the spinorial components. The approach is tested on simulations, obtaining a similar residual level with respect to the one obtained with other implementations of the ILC, and perceiving the polarization rotation of a toy model with the frequency dependence of the Faraday rotation.Comment: 14 pages, 8 figures, 2 tables. Accepted for publication in MNRA
    corecore