6 research outputs found

    Herschel *-ATLAS: Deep HST/WFC3 imaging of strongly lensed submillimetre galaxies

    Get PDF
    M. Negrello et al.We report on deep near-infrared observations obtained with the Wide Field Camera-3 (WFC3) onboard the Hubble Space Telescope (HST) of the first five confirmed gravitational lensing events discovered by the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). We succeed in disentangling the background galaxy from the lens to gain separate photometry of the two components. The HST data allow us to significantly improve on previous constraints of the mass in stars of the lensed galaxy and to perform accurate lens modelling of these systems, as described in the accompanying paper by Dye et al. We fit the spectral energy distributions of the background sources from near-IR to millimetre wavelengths and use the magnification factors estimated by Dye et al. to derive the intrinsic properties of the lensed galaxies. We find these galaxies to have star-formations rates (SFR) ~ 400-2000 M⊙ yr-1, with ~(6-25) × 1010 M⊙ of their baryonic mass already turned into stars. At these rates of star formation, all remaining molecular gas will be exhausted in less than ~100 Myr, reaching a final mass in stars of a few 1011 M⊙. These galaxies are thus proto-ellipticals caught during their major episode of star formation, and observed at the peak epoch (z ~ 1.5-3) of the cosmic star formation history of the Universe.This work was supported by STFC (grants PP/D002400/1 and ST/G002533/1), by ASI/INAF agreement I/072/09/0, by PRININAF 2012 project ‘Looking into the dust-obscured phase of galaxy formation through cosmic zoom lenses in the Herschel Astrophysical Large Area Survey’ and, in part, by the Spanish Ministerio de Ciencia e Innovacion (project AYA2010-21766-C03-01). JGN acknowledges financial support from the Spanish CSIC for a JAE-DOC fellowship, co-funded by the European Social Fund.Peer Reviewe

    <i>Herschel</i>-ATLAS: deep <i>HST</i>/WFC3 imaging of strongly lensed submillimetre galaxies

    Get PDF
    We report on deep near-infrared observations obtained with the Wide Field Camera-3 (WFC3) onboard the Hubble Space Telescope (HST) of the first five confirmed gravitational lensing events discovered by the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). We succeed in disentangling the background galaxy from the lens to gain separate photometry of the two components. The HST data allow us to significantly improve on previous constraints of the mass in stars of the lensed galaxy and to perform accurate lens modelling of these systems, as described in the accompanying paper by Dye et al. We fit the spectral energy distributions of the background sources from near-IR to millimetre wavelengths and use the magnification factors estimated by Dye et al. to derive the intrinsic properties of the lensed galaxies. We find these galaxies to have star-formations rates (SFR) ∼ 400–2000 M⊙ yr−1, with ∼(6–25) × 1010 M⊙ of their baryonic mass already turned into stars. At these rates of star formation, all remaining molecular gas will be exhausted in less than ∼100 Myr, reaching a final mass in stars of a few 1011 M⊙. These galaxies are thus proto-ellipticals caught during their major episode of star formation, and observed at the peak epoch (z ∼ 1.5–3) of the cosmic star formation history of the Universe

    Herschel*-ATLAS: deep HST/WFC3 imaging of strongly lensed submillimetre galaxies

    Get PDF
    We report on deep near-infrared observations obtained with the Wide Field Camera-3 (WFC3) onboard the Hubble Space Telescope (HST) of the first five confirmed gravitational lensing events discovered by the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). We succeed in disentangling the background galaxy from the lens to gain separate photometry of the two components. The HST data allow us to significantly improve on previous constraints of the mass in stars of the lensed galaxy and to perform accurate lens modelling of these systems, as described in the accompanying paper by Dye et al. We fit the spectral energy distributions of the background sources from near-IR to millimetre wavelengths and use the magnification factors estimated by Dye et al. to derive the intrinsic properties of the lensed galaxies. We find these galaxies to have star-formations rates (SFR) ∼ 400–2000 M⊙ yr−1, with ∼(6–25) × 1010 M⊙ of their baryonic mass already turned into stars. At these rates of star formation, all remaining molecular gas will be exhausted in less than ∼100 Myr, reaching a final mass in stars of a few 1011 M⊙. These galaxies are thus proto-ellipticals caught during their major episode of star formation, and observed at the peak epoch (z ∼ 1.5–3) of the cosmic star formation history of the Universe

    Herschel *-ATLAS: deep HST/WFC3 imaging of strongly lensed submillimetre galaxies

    Get PDF
    We report on deep near-infrared observations obtained with the Wide Field Camera-3 (WFC3) onboard the Hubble Space Telescope (HST) of the first five confirmed gravitational lensing events discovered by the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). We succeed in disentangling the background galaxy from the lens to gain separate photometry of the two components. The HST data allow us to significantly improve on previous constraints of the mass in stars of the lensed galaxy and to perform accurate lens modelling of these systems, as described in the accompanying paper by Dye et al. We fit the spectral energy distributions of the background sources from near-IR to millimetre wavelengths and use the magnification factors estimated by Dye et al. to derive the intrinsic properties of the lensed galaxies. We find these galaxies to have star-formations rates (SFR) ~ 400-2000 M⊙ yr-1, with ~(6-25) × 1010 M⊙ of their baryonic mass already turned into stars. At these rates of star formation, all remaining molecular gas will be exhausted in less than ~100 Myr, reaching a final mass in stars of a few 1011 M⊙. These galaxies are thus proto-ellipticals caught during their major episode of star formation, and observed at the peak epoch (z ~ 1.5-3) of the cosmic star formation history of the Universe

    Herschel-ATLAS: deep HST/WFC3 imaging of strongly lensed submillimetre galaxies

    No full text
    We report on deep near-infrared observations obtained with the Wide Field Camera-3 (WFC3) onboard the HubbleSpace Telescope (HST) of the first five confirmed gravitational lensing events discovered by the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). We succeed in disentangling the background galaxy from the lens to gain separate photometry of the two components. The HST data allow us to significantly improve on previous constraints of the mass in stars of the lensed galaxy and to perform accurate lens modelling of these systems, as described in the accompanying paper by Dye et al. We fit the spectral energy distributions of the background sources from near-IR to millimetre wavelengths and use the magnification factors estimated by Dye et al. to derive the intrinsic properties of the lensed galaxies. We find these galaxies to have star-formations rates (SFR) ∼ 400–2000 M⊙ yr−1, with ∼(6–25) × 1010 M⊙ of their baryonic mass already turned into stars. At these rates of star formation, all remaining molecular gas will be exhausted in less than ∼100 Myr, reaching a final mass in stars of a few 1011 M⊙. These galaxies are thus proto-ellipticals caught during their major episode of star formation, and observed at the peak epoch (z ∼ 1.5–3) of the cosmic star formation history of the Universe

    Herschel *-ATLAS: deep HST/WFC3 imaging of strongly lensed submillimetre galaxies

    Get PDF
    International audienceWe report on deep near-infrared observations obtained with the Wide Field Camera-3 (WFC3) onboard the Hubble Space Telescope (HST) of the first five confirmed gravitational lensing events discovered by the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). We succeed in disentangling the background galaxy from the lens to gain separate photometry of the two components. The HST data allow us to significantly improve on previous constraints of the mass in stars of the lensed galaxy and to perform accurate lens modelling of these systems, as described in the accompanying paper by Dye et al. We fit the spectral energy distributions of the background sources from near-IR to millimetre wavelengths and use the magnification factors estimated by Dye et al. to derive the intrinsic properties of the lensed galaxies. We find these galaxies to have star-formations rates (SFR) ∼ 400-2000 M⊙ yr-1, with ∼(6-25) × 1010 M⊙ of their baryonic mass already turned into stars. At these rates of star formation, all remaining molecular gas will be exhausted in less than ∼100 Myr, reaching a final mass in stars of a few 1011 M⊙. These galaxies are thus proto-ellipticals caught during their major episode of star formation, and observed at the peak epoch (z ∼ 1.5-3) of the cosmic star formation history of the Universe
    corecore