4 research outputs found

    Free Form Lensing Implications for the Collision of Dark Matter and Gas in the Frontier Fields Cluster MACSJ0416.1-2403

    Full text link
    We present a free form mass reconstruction of the massive lensing cluster MACSJ0416.1-2403 using the latest Hubble Frontier Fields data. Our model independent method finds that the extended lensing pattern is generated by two elongated, closely projected clusters of similar mass. Our lens model identifies new lensed images with which we improve the accuracy of the dark matter distribution. We find that the bimodal mass distribution is nearly coincident with the bimodal X-ray emission, but with the two dark matter peaks lying closer together than the centroids of the X-ray emisison. We show this can be achieved if the collision has occurred close to the plane and such that the cores are deflected around each other. The projected mass profiles of both clusters are well constrained because of the many interior lensed images, leading to surprisingly flat mass profiles of both components in the region 15-100 kpc. We discuss the extent to which this may be generated by tidal forces in our dynamical model which are large during an encounter of this type as the cores "graze" each other. The relative velocity between the two cores is estimated to be about 1200 km/s and mostly along the line of sight so that our model is consistent with the relative redshift difference between the two cD galaxies (dz = 0.04).Comment: 22 pages, 18 figures, 2 table

    Free-form lensing implications for the collision of dark matter and gas in the frontier fields cluster MACS J0416.1-2403

    Get PDF
    We present a free-form mass reconstruction of the massive lensing cluster MACS J0416.1-2403 using the latest Hubble Frontier Fields data. Our free-form method finds that the extended lensing pattern is generated by two elongated, closely projected clusters of similar mass. Our lens model identifies new lensed images with which we improve the accuracy of the dark matter distribution. We find that the bimodal mass distribution is nearly coincident with the bimodal X-ray emission, but with the two dark matter peaks lying closer together than the centroids of the X-ray emission. We can reproduce this behaviour with our hydrodynamical model, concluding that the clusters are significantly deflected around each other with the plane of the collision lying close to the line of sight. The projected mass profiles of both subclusters are well constrained in the region 30-165 kpc because of the many interior lensed images, leading to surprisingly flat mass profiles of both components at distances 30-100 kpc from the centre, in agreement with recent simulations of self-interacting dark matter. Using N-body simulations, we discuss the extent to which this may be generated by projection effects in our model as the cores graze each other. The relative velocity between the two cores is estimated to be about 1200 km s-1 and mostly along the line of sight so that our simulation is consistent with the relative redshift difference between the two cD galaxies (δz ≈ 0.04).JMD acknowledges support of the consolider project CAD2010-00064 and AYA2012-39475-C02-01 funded by the Ministerio de Economia y Competitividad.Peer Reviewe
    corecore