1 research outputs found

    Excitation power dependence of the Purcell effect in photonic crystalmicrocavity lasers with quantum wires

    Get PDF
    [EN] The Purcell effect dependence on the excitation power is studied in photonic crystal microcavity lasers embedding InAs/InP quantum wires. In the case of non-lasing modes, the Purcell effect has low dependence on the optical pumping, attributable to an exciton dynamics combining free and localized excitons. In the case of lasing modes, the influence of the stimulated emission makes ambiguous the determination of the Purcell factor. We have found that this ambiguity can be avoided by measuring the dependence of the decay time on the excitation power. These results provide insights in the determination of the Purcell factor in microcavity lasers.We want to acknowledge financial support from the Spanish MICINN through grants (Nos. S-0505-TIC-0191, TEC2008-06756-C03-01/-03, TEC2011-29045-C04-03, TEC2011-29120-C05-01/04, and CAM S2009ESP-1503). J.C.-F. thanks the Spanish MCI for his FPI grant (No. BES-2006-12300).Canet-Ferrer, J.; Prieto, I.; Muñoz Matutano, G.; MartĂ­nez, L.; Muñoz-Camuniez, L.; Llorens, J.; Fuster, D.... (2013). Excitation power dependence of the Purcell effect in photonic crystalmicrocavity lasers with quantum wires. Applied Physics Letters. 102(20). https://doi.org/10.1063/1.4807439S10220GĂ©rard, J., Sermage, B., Gayral, B., Legrand, B., Costard, E., & Thierry-Mieg, V. (1998). Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity. Physical Review Letters, 81(5), 1110-1113. doi:10.1103/physrevlett.81.1110Englund, D., Fattal, D., Waks, E., Solomon, G., Zhang, B., Nakaoka, T., 
 Vučković, J. (2005). Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal. Physical Review Letters, 95(1). doi:10.1103/physrevlett.95.013904Munsch, M., Mosset, A., AuffĂšves, A., Seidelin, S., Poizat, J. P., GĂ©rard, J.-M., 
 Senellart, P. (2009). Continuous-wave versus time-resolved measurements of Purcell factors for quantum dots in semiconductor microcavities. Physical Review B, 80(11). doi:10.1103/physrevb.80.115312Yoshie, T., Scherer, A., Hendrickson, J., Khitrova, G., Gibbs, H. M., Rupper, G., 
 Deppe, D. G. (2004). Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature, 432(7014), 200-203. doi:10.1038/nature03119Badolato, A. (2005). Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes. Science, 308(5725), 1158-1161. doi:10.1126/science.1109815Hennessy, K., Badolato, A., Winger, M., Gerace, D., AtatĂŒre, M., Gulde, S., 
 Imamoğlu, A. (2007). Quantum nature of a strongly coupled single quantum dot–cavity system. Nature, 445(7130), 896-899. doi:10.1038/nature05586Strauf, S. (2010). Towards efficient quantum sources. Nature Photonics, 4(3), 132-134. doi:10.1038/nphoton.2010.11Altug, H., Englund, D., & Vučković, J. (2006). Ultrafast photonic crystal nanocavity laser. Nature Physics, 2(7), 484-488. doi:10.1038/nphys343Azzini, S., Gerace, D., Galli, M., Sagnes, I., Braive, R., LemaĂźtre, A., 
 Bajoni, D. (2011). Ultra-low threshold polariton lasing in photonic crystal cavities. Applied Physics Letters, 99(11), 111106. doi:10.1063/1.3638469Nozaki, K., Kita, S., & Baba, T. (2007). Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser. Optics Express, 15(12), 7506. doi:10.1364/oe.15.007506Strauf, S., Hennessy, K., Rakher, M. T., Choi, Y.-S., Badolato, A., Andreani, L. C., 
 Bouwmeester, D. (2006). Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers. Physical Review Letters, 96(12). doi:10.1103/physrevlett.96.127404Kippenberg, T. J., Spillane, S. M., & Vahala, K. J. (2004). Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip. Applied Physics Letters, 85(25), 6113-6115. doi:10.1063/1.1833556Arakawa, Y., & Sakaki, H. (1982). Multidimensional quantum well laser and temperature dependence of its threshold current. Applied Physics Letters, 40(11), 939-941. doi:10.1063/1.92959Kapon, E. (1992). Quantum wire lasers. Proceedings of the IEEE, 80(3), 398-410. doi:10.1109/5.135356Canet-Ferrer, J., Munoz-Matutano, G., Fuster, D., Alen, B., Gonzalez, Y., Gonzalez, L., & Martinez-Pastor, J. P. (2011). Localization effects on recombination dynamics in InAs/InP self-assembled quantum wires emitting at 1.5 Όm. Journal of Applied Physics, 110(10), 103502. doi:10.1063/1.3660260AlĂ©n, B., Martı́nez-Pastor, J., Garcı́a-Cristobal, A., GonzĂĄlez, L., & Garcı́a, J. M. (2001). Optical transitions and excitonic recombination in InAs/InP self-assembled quantum wires. Applied Physics Letters, 78(25), 4025-4027. doi:10.1063/1.1379991Cao, M., Daste, P., Miyamoto, Y., Miyake, Y., Nogiwa, S., Arai, S., 
 Suematsu, Y. (1988). GaInAsP/InP single-quantum-well (SQW) laser with wire-like active region towards quantum wire laser. Electronics Letters, 24(13), 824. doi:10.1049/el:19880561Atlasov, K. A., Calic, M., Karlsson, K. F., Gallo, P., Rudra, A., Dwir, B., & Kapon, E. (2009). Photonic-crystal microcavity laser with site-controlled quantum-wire active medium. Optics Express, 17(20), 18178. doi:10.1364/oe.17.018178Martinez, L. J., AlĂ©n, B., Prieto, I., Fuster, D., GonzĂĄlez, L., GonzĂĄlez, Y., 
 Postigo, P. A. (2009). Room temperature continuous wave operation in a photonic crystal microcavity laser with a single layer of InAs/InP self-assembled quantum wires. Optics Express, 17(17), 14993. doi:10.1364/oe.17.014993Mao, M.-H., & Chien, H.-C. (2012). Transient behaviors of current-injection quantum-dot microdisk lasers. Optics Express, 20(3), 3302. doi:10.1364/oe.20.003302Gregersen, N., Suhr, T., Lorke, M., & MĂžrk, J. (2012). Quantum-dot nano-cavity lasers with Purcell-enhanced stimulated emission. Applied Physics Letters, 100(13), 131107. doi:10.1063/1.3697702Kim, S.-H., Kim, G.-H., Kim, S.-K., Park, H.-G., Lee, Y.-H., & Kim, S.-B. (2004). Characteristics of a stick waveguide resonator in a two-dimensional photonic crystal slab. Journal of Applied Physics, 95(2), 411-416. doi:10.1063/1.1633645Martínez, L. J., Prieto, I., Alén, B., & Postigo, P. A. (2009). Fabrication of high quality factor photonic crystal microcavities in InAsP∕InP membranes combining reactive ion beam etching and reactive ion etching. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 27(4), 1801. doi:10.1116/1.3151832Canet-Ferrer, J., MartĂ­nez, L. J., Prieto, I., AlĂ©n, B., Muñoz-Matutano, G., Fuster, D., 
 MartĂ­nez-Pastor, J. P. (2012). Purcell effect in photonic crystal microcavities embedding InAs/InP quantum wires. Optics Express, 20(7), 7901. doi:10.1364/oe.20.007901AlĂ©n, B., Fuster, D., Muñoz-Matutano, G., MartĂ­nez-Pastor, J., GonzĂĄlez, Y., Canet-Ferrer, J., & GonzĂĄlez, L. (2008). Exciton Gas Compression and Metallic Condensation in a Single Semiconductor Quantum Wire. Physical Review Letters, 101(6). doi:10.1103/physrevlett.101.067405Baba, T., & Sano, D. (2003). Low-threshold lasing and purcell effect in microdisk lasers at room temperature. IEEE Journal of Selected Topics in Quantum Electronics, 9(5), 1340-1346. doi:10.1109/jstqe.2003.81946
    corecore