1 research outputs found

    Nonadiabatic couplings in the collisional removal of O2(b g+,v) by O2

    Get PDF
    10 pages, 8 figures.The effect of nonadiabatic couplings on the collisional removal of O2(b g+,v) by O2(X g−, v = 0) is investigated. Two-dimensional adiabatic and quasidiabatic potential energy surfaces for the excited dimer states and the corresponding nonadiabatic radial couplings have been computed by means of ab initio calculations. Alternately, a two-state theoretical model, based on the Landau–Zener and Rosen–Zener–Demkov assumptions, has been employed to derive analytical forms for the nonadiabatic couplings and an adiabatic-to-diabatic transformation only depending on a reduced set of adiabatic energy terms. Compared to the ab initio results, the predictions of the model are found to be highly accurate. Quantum dynamics calculations for the removal of the first ten vibrational states of O2(b g+,v) indicate a clear dominant contribution of the vibration-electronic relaxation mechanism relative to the vibration-translation energy transfer. Although the present reduced-dimensionality model precludes any quantitative comparison with experiments, it is found that the removal probabilities for v = 1–3 are qualitatively consistent with the experimental observations, once the vibrational structure of the fragments is corrected with spectroscopical terms. Besides, the model served to show how the computation of the adiabatic PESs just at the crossing seam was sufficient to describe the nonadiabatic dynamics related to a given geometrical arrangement. This implies considerable savings in the calculations which will eventually allow for larger accuracy in the ab initio calculations as well as higher dimensional treatments.Work was partially supported by MEC (Spain, Grant No. CTQ2007-62898-BQU) and by binational CSIC-CONACYT program (Grant No. 2005MX0025/J110.483). The ab initio calculations were performed at the IDRIS-CNRS French National Computing Center and on the MPOPM Cluster at the Paris Observatory.Peer reviewe
    corecore