3 research outputs found

    The evolution of Balmer jump selected galaxies in the ALHAMBRA survey

    Full text link
    We present a new color-selection technique, based on the Bruzual & Charlot models convolved with the bands of the ALHAMBRA survey, and the redshifted position of the Balmer jump to select star-forming galaxies in the redshift range 0.5 < z < 1.5. These galaxies are dubbed Balmer jump Galaxies BJGs. We apply the iSEDfit Bayesian approach to fit each detailed SED and determine star-formation rate (SFR), stellar mass, age and absolute magnitudes. The mass of the haloes where these samples reside are found via a clustering analysis. Five volume-limited BJG sub-samples with different mean redshifts are found to reside in haloes of median masses ∼1012.5±0.2M⊙\sim 10^{12.5 \pm 0.2} M_\odot slightly increasing toward z=0.5. This increment is similar to numerical simulations results which suggests that we are tracing the evolution of an evolving population of haloes as they grow to reach a mass of ∼1012.7±0.1M⊙\sim 10^{12.7 \pm 0.1} M_\odot at z=0.5. The likely progenitors of our samples at z∼\sim3 are Lyman Break Galaxies, which at z∼\sim2 would evolve into star-forming BzK galaxies, and their descendants in the local Universe are elliptical galaxies.Hence, this allows us to follow the putative evolution of the SFR, stellar mass and age of these galaxies. From z∼\sim1.0 to z∼\sim0.5, the stellar mass of the volume limited BJG samples nearly does not change with redshift, suggesting that major mergers play a minor role on the evolution of these galaxies. The SFR evolution accounts for the small variations of stellar mass, suggesting that star formation and possible minor mergers are the main channels of mass assembly.Comment: 14 pages, 10 figures. Submitted to A&A. It includes first referee's comments. Abstract abridged due to arXiv requirement

    Evolution of Balmer jump selected galaxies in the ALHAMBRA survey

    Get PDF
    Extragalactic astronomy.-- et al.[Context]: Samples of star-forming galaxies at different redshifts have been traditionally selected via color techniques. The ALHAMBRA survey was designed to perform a uniform cosmic tomography of the Universe, and we here exploit it to trace the evolution of these galaxies. [Aims]: Our objective is to use the homogeneous optical coverage of the ALHAMBRA filter system to select samples of star-forming galaxies at different epochs of the Universe and study their properties. [Methods]: We present a new color-selection technique, based on the models of spectral evolution convolved with the ALHAMBRA bands and the redshifted position of the Balmer jump to select star-forming galaxies in the redshift range 0.5 <z< 1.5. These galaxies are dubbed Balmer-jump Galaxies (BJGs). We applied the iSEDfit Bayesian approach to fit each detailed spectral energy distribution and determined star-formation rate (SFR), stellar mass, age, and absolute magnitudes. The mass of the halos in which these samples reside were found through a clustering analysis. [Results]: Five volume-limited BJG subsamples with different mean redshifts are found to reside in halos of median masses ∼10 M slightly increasing toward z = 0.5. This increment is similar to numerical simulations results, which suggests that we trace the evolution of an evolving population of halos as they grow to reach a mass of ∼10 at z = 0.5. The likely progenitors of our samples at z ∼ 3 are Lyman-break galaxies, which at z ∼ 2 would evolve into star-forming BzK galaxies, and their descendants in the local Universe are galaxies with luminosities of 1-3 L. Hence, this allows us to follow the putative evolution of the SFR, stellar mass, and age of these galaxies. [Conclusions]: From z ∼ 1.0 to z ∼ 0.5, the stellar mass of the volume-limited BJG samples changes almost not at all with redshift, suggesting that major mergers play a minor role in the evolution of these galaxies. The SFR evolution accounts for the small variations of stellar mass, suggesting that star formation and possible minor mergers are the main channels of mass assembly.P.T. and A.M.A. acknowledge support from FONDECYT 3140542 and FONDECYT 3160776, respectively. L.I., A.M.A., P.T., S.G., N.P. acknowledge support from Basal-CATA PFB-06/2007. E.J.A. acknowledges support from the Spanish Ministry for Economy and Competitiveness and FEDER funds through grant AYA2013-40611-P. A.F.S., V.J.M. and P.A.M. acknowledge partial financial support from the Spanish Ministry for Economy and Competitiveness and FEDER funds through grant AYA2013-48623-C2-2, and from Generalitat Valenciana through project PrometeoII 2014/060. B.A. acknowledges received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 656354.Peer Reviewe
    corecore