11 research outputs found

    Planck intermediate results. III. The relation between galaxy cluster mass and Sunyaev-Zeldovich signal

    Get PDF
    We examine the relation between the galaxy cluster mass M and Sunyaev-Zeldovich (SZ) effect signal D_A^2 Y for a sample of 19 objects for which weak lensing (WL) mass measurements obtained from Subaru Telescope data are available in the literature. Hydrostatic X-ray masses are derived from XMM-Newton archive data and the SZ effect signal is measured from Planck all-sky survey data. We find an M_WL-D_A^2 Y relation that is consistent in slope and normalisation with previous determinations using weak lensing masses; however, there is a normalisation offset with respect to previous measures based on hydrostatic X-ray mass-proxy relations. We verify that our SZ effect measurements are in excellent agreement with previous determinations from Planck data. For the present sample, the hydrostatic X-ray masses at R_500 are on average ~ 20 per cent larger than the corresponding weak lensing masses, at odds with expectations. We show that the mass discrepancy is driven by a difference in mass concentration as measured by the two methods, and, for the present sample, the mass discrepancy and difference in mass concentration is especially large for disturbed systems. The mass discrepancy is also linked to the offset in centres used by the X-ray and weak lensing analyses, which again is most important in disturbed systems. We outline several approaches that are needed to help achieve convergence in cluster mass measurement with X-ray and weak lensing observations.Comment: 19 pages, 9 figures, matches accepted versio

    Planck intermediate results: III. The relation between galaxy cluster mass and Sunyaev-Zeldovich signal

    Get PDF
    We examine the relation between the galaxy cluster mass M and Sunyaev-Zeldovich (SZ) effect signal DA 2 Y500 for a sample of 19 objects for which weak lensing (WL) mass measurements obtained from Subaru Telescope data are available in the literature. Hydrostatic X-ray masses are derived from XMM-Newton archive data, and the SZ effect signal is measured from Planck all-sky survey data. We find an MWL-D A 2 Y500 relation that is consistent in slope and normalisation with previous determinations using weak lensing masses; however, there is a normalisation offset with respect to previous measures based on hydrostatic X-ray mass-proxy relations. We verify that our SZ effect measurements are in excellent agreement with previous determinations from Planck data. For the present sample, the hydrostatic X-ray masses at R500 are on average ~ 20 percent larger than the corresponding weak lensing masses, which is contrary to expectations. We show that the mass discrepancy is driven by a difference in mass concentration as measured by the two methods and, for the present sample, that the mass discrepancy and difference in mass concentration are especially large for disturbed systems. The mass discrepancy is also linked to the offset in centres used by the X-ray and weak lensing analyses, which again is most important in disturbed systems. We outline several approaches that are needed to help achieve convergence in cluster mass measurement with X-ray and weak lensing observations. © ESO, 2013.The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and DEISA (EU).Peer Reviewe

    Planck intermediate results: III. the relation between galaxy cluster mass and Sunyaev-Zeldovich signal

    Get PDF
    We examine the relation between the galaxy cluster mass M and Sunyaev-Zeldovich (SZ) effect signal DA2 Y500 for a sample of 19 objects for which weak lensing (WL) mass measurements obtained from Subaru Telescope data are available in the literature. Hydrostatic X-ray masses are derived from XMM-Newton archive data, and the SZ effect signal is measured from Planck all-sky survey data. We find an MWL-D A2 Y500 relation that is consistent in slope and normalisation with previous determinations using weak lensing masses; however, there is a normalisation offset with respect to previous measures based on hydrostatic X-ray mass-proxy relations. We verify that our SZ effect measurements are in excellent agreement with previous determinations from Planck data. For the present sample, the hydrostatic X-ray masses at R500 are on average ~ 20 percent larger than the corresponding weak lensing masses, which is contrary to expectations. We show that the mass discrepancy is driven by a difference in mass concentration as measured by the two methods and, for the present sample, that the mass discrepancy and difference in mass concentration are especially large for disturbed systems. The mass discrepancy is also linked to the offset in centres used by the X-ray and weak lensing analyses, which again is most important in disturbed systems. We outline several approaches that are needed to help achieve convergence in cluster mass measurement with X-ray and weak lensing observations. © ESO, 2013

    Planck intermediate results III.The relation between galaxy cluster mass and Sunyaev-Zeldovich signal

    Get PDF
    We examine the relation between the galaxy cluster mass M and Sunyaev-Zeldovich (SZ) effect signal for a sample of 19 objects for which weak lensing (WL) mass measurements obtained from Subaru Telescope data are available in the literature. Hydrostatic X-ray masses are derived from XMM-Newton archive data, and the SZ effect signal is measured from Planck all-sky survey data. We find an relation that is consistent in slope and normalisation with previous determinations using weak lensing masses; however, there is a normalisation offset with respect to previous measures based on hydrostatic X-ray mass-proxy relations. We verify that our SZ effect measurements are in excellent agreement with previous determinations from Planck data. For the present sample, the hydrostatic X-ray masses at R500 are on average ~20 percent larger than the corresponding weak lensing masses, which is contrary to expectations. We show that the mass discrepancy is driven by a difference in mass concentration as measured by the two methods and, for the present sample, that the mass discrepancy and difference in mass concentration are especially large for disturbed systems. The mass discrepancy is also linked to the offset in centres used by the X-ray and weak lensing analyses, which again is most important in disturbed systems. We outline several approaches that are needed to help achieve convergence in cluster mass measurement with X-ray and weak lensing observations

    Planck intermediate results. III. The relation between galaxy cluster mass and Sunyaev-Zeldovich signal

    No full text
    none186We examine the relation between the galaxy cluster mass M and Sunyaev-Zeldovich (SZ) effect signal DA2 Y500 for a sample of 19 objects for which weak lensing (WL) mass measurements obtained from Subaru Telescope data are available in the literature. Hydrostatic X-ray masses are derived from XMM-Newton archive data, and the SZ effect signal is measured from Planck all-sky survey data. We find an MWL - DA2 Y500 relation that is consistent in slope and normalisation with previous determinations using weak lensing masses; however, there is a normalisation offset with respect to previous measures based on hydrostatic X-ray mass-proxy relations. We verify that our SZ effect measurements are in excellent agreement with previous determinations from Planck data. For the present sample, the hydrostatic X-ray masses at R500 are on average ~ 20 percent larger than the corresponding weak lensing masses, which is contrary to expectations. We show that the mass discrepancy is driven by a difference in mass concentration as measured by the two methods and, for the present sample, that the mass discrepancy and difference in mass concentration are especially large for disturbed systems. The mass discrepancy is also linked to the offset in centres used by the X-ray and weak lensing analyses, which again is most important in disturbed systems. We outline several approaches that are needed to help achieve convergence in cluster mass measurement with X-ray and weak lensing observations. Appendices are available in electronic form at <A href="http://www.aanda.org">http://www.aanda.orgP. Collaboration;P. A. R.;N. Aghanim;M. Arnaud;M. Ashdown;F. Atrio-Barandela;J. Aumont;C. Baccigalupi;A. Balbi;A. J. Banday;R. B. Barreiro;J. G. Bartlett;E. Battaner;R. Battye;K. Benabed;J. Bernard;M. Bersanelli;R. Bhatia;I. Bikmaev;H. B�hringer;A. Bonaldi;J. R. Bond;S. Borgani;J. Borrill;F. R. Bouchet;H. Bourdin;M. L. Brown;M. Bucher;R. Burenin;C. Burigana;R. C. Butler;P. Cabella;J. Cardoso;P. Carvalho;A. Chamballu;L. Chiang;G. Chon;D. L. Clements;S. Colafrancesco;A. Coulais;F. Cuttaia;A. D. Silva;H. Dahle;R. J. Davis;P. d. Bernardis;G. d. Gasperis;J. Delabrouille;J. D�mocl�s;F. D�sert;J. M. Diego;K. Dolag;H. Dole;S. Donzelli;O. Dor�;M. Douspis;X. Dupac;G. Efstathiou;T. A. En�lin;H. K. Eriksen;F. Finelli;I. Flores-Cacho;O. Forni;M. Frailis;E. Franceschi;M. Frommert;S. Galeotta;K. Ganga;R. T. G�nova-Santos;M. Giard;Y. Giraud-H�raud;J. Gonz�lez-Nuevo;K. M. G�rski;A. Gregorio;A. Gruppuso;F. K. Hansen;D. Harrison;C. Hern�ndez-Monteagudo;D. Herranz;S. R. Hildebrandt;E. Hivon;M. Hobson;W. A. Holmes;K. M. Huffenberger;G. Hurier;T. Jagemann;M. Juvela;E. Keih�nen;I. Khamitov;R. Kneissl;J. Knoche;M. Kunz;H. Kurki-Suonio;G. Lagache;J. Lamarre;A. Lasenby;C. R. Lawrence;M. L. Jeune;S. Leach;R. Leonardi;A. Liddle;P. B. Lilje;M. Linden-V�rnle;M. L�pez-Caniego;G. Luzzi;J. F. Mac�as-P�rez;D. Maino;N. Mandolesi;M. Maris;F. Marleau;D. J. Marshall;E. Mart�nez-Gonz�lez;S. Masi;S. Matarrese;F. Matthai;P. Mazzotta;P. R. Meinhold;A. Melchiorri;J. Melin;L. Mendes;S. Mitra;M. Miville-Desch�nes;L. Montier;G. Morgante;D. Munshi;P. Natoli;H. U. N�rgaard-Nielsen;F. Noviello;S. Osborne;F. Pajot;D. Paoletti;B. Partridge;T. J. Pearson;O. Perdereau;F. Perrotta;F. Piacentini;M. Piat;E. Pierpaoli;R. Piffaretti;P. Platania;E. Pointecouteau;G. Polenta;N. Ponthieu;L. Popa;T. Poutanen;G. W. Pratt;S. Prunet;J. Puget;J. P. Rachen;R. Rebolo;M. Reinecke;M. Remazeilles;C. Renault;S. Ricciardi;I. Ristorcelli;G. Rocha;C. Rosset;M. Rossetti;J. A. Rubi�o-Mart�n;B. Rusholme;M. Sandri;G. Savini;D. Scott;J. Starck;F. Stivoli;V. Stolyarov;R. Sudiwala;R. Sunyaev;D. Sutton;A. Suur-Uski;J. Sygnet;J. A. Tauber;L. Terenzi;L. Toffolatti;M. Tomasi;M. Tristram;L. Valenziano;B. V. Tent;P. Vielva;F. Villa;N. Vittorio;B. D. Wandelt;J. Weller;S. D. M.;D. Yvon;A. Zacchei;A. ZoncaP., Collaboration; P. A., R.; N., Aghanim; M., Arnaud; M., Ashdown; F., Atrio Barandela; J., Aumont; C., Baccigalupi; A., Balbi; A. J., Banday; R. B., Barreiro; J. G., Bartlett; E., Battaner; R., Battye; K., Benabed; J., Bernard; M., Bersanelli; R., Bhatia; I., Bikmaev; H., B�hringer; A., Bonaldi; J. R., Bond; S., Borgani; J., Borrill; F. R., Bouchet; H., Bourdin; M. L., Brown; M., Bucher; R., Burenin; C., Burigana; R. C., Butler; P., Cabella; J., Cardoso; P., Carvalho; A., Chamballu; L., Chiang; G., Chon; D. L., Clements; S., Colafrancesco; A., Coulais; F., Cuttaia; A. D., Silva; H., Dahle; R. J., Davis; P. d., Bernardis; G. d., Gasperis; J., Delabrouille; J., D�mocl�s; F., D�sert; J. M., Diego; K., Dolag; H., Dole; S., Donzelli; O., Dor�; M., Douspis; X., Dupac; G., Efstathiou; T. A., En�lin; H. K., Eriksen; F., Finelli; I., Flores Cacho; O., Forni; M., Frailis; E., Franceschi; M., Frommert; S., Galeotta; K., Ganga; R. T., G�nova Santos; M., Giard; Y., Giraud H�raud; J., Gonz�lez Nuevo; K. M., G�rski; A., Gregorio; A., Gruppuso; F. K., Hansen; D., Harrison; C., Hern�ndez Monteagudo; D., Herranz; S. R., Hildebrandt; E., Hivon; M., Hobson; W. A., Holmes; K. M., Huffenberger; G., Hurier; T., Jagemann; M., Juvela; E., Keih�nen; I., Khamitov; R., Kneissl; J., Knoche; M., Kunz; H., Kurki Suonio; G., Lagache; J., Lamarre; A., Lasenby; C. R., Lawrence; M. L., Jeune; S., Leach; R., Leonardi; A., Liddle; P. B., Lilje; M., Linden V�rnle; M., L�pez Caniego; G., Luzzi; J. F., Mac�as P�rez; D., Maino; N., Mandolesi; M., Maris; F., Marleau; D. J., Marshall; E., Mart�nez Gonz�lez; S., Masi; S., Matarrese; F., Matthai; P., Mazzotta; P. R., Meinhold; A., Melchiorri; J., Melin; L., Mendes; S., Mitra; M., Miville Desch�nes; L., Montier; G., Morgante; D., Munshi; P., Natoli; H. U., N�rgaard Nielsen; F., Noviello; S., Osborne; F., Pajot; D., Paoletti; B., Partridge; T. J., Pearson; O., Perdereau; F., Perrotta; F., Piacentini; M., Piat; E., Pierpaoli; R., Piffaretti; P., Platania; E., Pointecouteau; G., Polenta; N., Ponthieu; L., Popa; T., Poutanen; G. W., Pratt; S., Prunet; J., Puget; J. P., Rachen; R., Rebolo; M., Reinecke; M., Remazeilles; C., Renault; S., Ricciardi; I., Ristorcelli; G., Rocha; C., Rosset; M., Rossetti; J. A., Rubi�o Mart�n; B., Rusholme; M., Sandri; G., Savini; D., Scott; J., Starck; F., Stivoli; V., Stolyarov; R., Sudiwala; R., Sunyaev; D., Sutton; A., Suur Uski; J., Sygnet; J. A., Tauber; Terenzi, Luca; L., Toffolatti; M., Tomasi; M., Tristram; L., Valenziano; B. V., Tent; P., Vielva; F., Villa; N., Vittorio; B. D., Wandelt; J., Weller; S. D., M.; D., Yvon; A., Zacchei; A., Zonc

    Planck intermediate results III. The relation between galaxy cluster mass and Sunyaev-Zeldovich signal

    Get PDF
    Contains fulltext : 111205.pdf (preprint version ) (Open Access

    Planck intermediate results III. The relation between galaxy cluster mass and Sunyaev-Zeldovich signal

    Get PDF
    We examine the relation between the galaxy cluster mass M and Sunyaev-Zeldovich (SZ) effect signal D-A(2) Y-500 for a sample of 19 objects for which weak lensing (WL) mass measurements obtained from Subaru Telescope data are available in the literature. Hydrostatic X-ray masses are derived from XMM-Newton archive data, and the SZ effect signal is measured from Planck all-sky survey data. We find an M-WL-D-A(2) Y-500 relation that is consistent in slope and normalisation with previous determinations using weak lensing masses; however, there is a normalisation offset with respect to previous measures based on hydrostatic X-ray mass-proxy relations. We verify that our SZ effect measurements are in excellent agreement with previous determinations from Planck data. For the present sample, the hydrostatic X-ray masses at R-500 are on average similar to 20 percent larger than the corresponding weak lensing masses, which is contrary to expectations. We show that the mass discrepancy is driven by a difference in mass concentration as measured by the two methods and, for the present sample, that the mass discrepancy and difference in mass concentration are especially large for disturbed systems. The mass discrepancy is also linked to the offset in centres used by the X-ray and weak lensing analyses, which again is most important in disturbed systems. We outline several approaches that are needed to help achieve convergence in cluster mass measurement with X-ray and weak lensing observations

    intermediate results

    No full text
    We examine the relation between the galaxy cluster mass M and Sunyaev-Zeldovich (SZ) effect signal \hbox{\DAY} for a sample of 19 objects for which weak lensing (WL) mass measurements obtained from Subaru Telescope data are available in the literature. Hydrostatic X-ray masses are derived from XMM-Newton archive data, and the SZ effect signal is measured from Planck all-sky survey data. We find an \hbox{M_{\rm WL}{-}\DAY} relation that is consistent in slope and normalisation with previous determinations using weak lensing masses; however, there is a normalisation offset with respect to previous measures based on hydrostatic X-ray mass-proxy relations. We verify that our SZ effect measurements are in excellent agreement with previous determinations from Planck data. For the present sample, the hydrostatic X-ray masses at R500 are on average ~20 percent larger than the corresponding weak lensing masses, which is contrary to expectations. We show that the mass discrepancy is driven by a difference in mass concentration as measured by the two methods and, for the present sample, that the mass discrepancy and difference in mass concentration are especially large for disturbed systems. The mass discrepancy is also linked to the offset in centres used by the X-ray and weak lensing analyses, which again is most important in disturbed systems. We outline several approaches that are needed to help achieve convergence in cluster mass measurement with X-ray and weak lensing observations

    Planck intermediate results. III. The relation between galaxy cluster mass and Sunyaev-Zeldovich signal

    No full text
    We examine the relation between the galaxy cluster mass M and Sunyaev-Zeldovich (SZ) effect signal DA2 Y500 for a sample of 19 objects for which weak lensing (WL) mass measurements obtained from Subaru Telescope data are available in the literature. Hydrostatic X-ray masses are derived from XMM-Newton archive data, and the SZ effect signal is measured from Planck all-sky survey data. We find an MWL - DA2 Y500 relation that is consistent in slope and normalisation with previous determinations using weak lensing masses; however, there is a normalisation offset with respect to previous measures based on hydrostatic X-ray mass-proxy relations. We verify that our SZ effect measurements are in excellent agreement with previous determinations from Planck data. For the present sample, the hydrostatic X-ray masses at R500 are on average ~ 20 percent larger than the corresponding weak lensing masses, which is contrary to expectations. We show that the mass discrepancy is driven by a difference in mass concentration as measured by the two methods and, for the present sample, that the mass discrepancy and difference in mass concentration are especially large for disturbed systems. The mass discrepancy is also linked to the offset in centres used by the X-ray and weak lensing analyses, which again is most important in disturbed systems. We outline several approaches that are needed to help achieve convergence in cluster mass measurement with X-ray and weak lensing observations
    corecore