2 research outputs found

    Bioavailability of solid and non-aqueous phase liquid (NAPL)-dissolved phenanthrene to the biosurfactant-producing bacterium Pseudomonas aeruginosa 19SJ

    No full text
    The biodegradation of phenanthrene by the biosurfactant-producing strain Pseudomonas aeruginosa 19SJ was investigated in experiments with the compound present either as crystals or dissolved in non-aqueous phase liquids (NAPLs). Growth on solid phenanthrene exhibited an initial phase not limited by dissolution rate and a subsequent, carbon-limited phase caused by exhaustion of the carbon source. Rhamnolipid biosurfactants were produced from solid phenanthrene and appeared in solution and particulate material (cells and phenanthrene crystals). During the carbon-limited phase, the concentration of rhamnolipids detected in culture exceeded the critical micelle concentration (CMC) determined with purified rhamnolipids. The biosurfactants caused a significant increase in dissolution rate and pseudosolubility of phenanthrene, but only at concentrations above the CMC. Externally added rhamnolipids at a concentration higher than the CMC increased the biodegradation rate of solid phenanthrene. Mineralization curves of low concentrations of phenanthrene initially dissolved in two NAPLs [2,2,4,4,6,8,8-heptamethylnonane and di(2-ethylhexyl)phthalate] were S-shaped, although no growth was observed in the population of suspended bacteria. Biosurfactants were not detected in solution under these conditions. The observed mineralization was attributed not only to suspended bacteria, but also to bacterial populations growing at the NAPL-water interface, mineralizing the compound at higher rates than predicted by abiotic partitioning. We suggest that rhamnolipid production and attachment increased the bioavailability of phenanthrene, so promoting biodegradation activity.Peer Reviewe
    corecore