1 research outputs found

    Subphthalocyanine encapsulated within MIL-101(Cr)-NH2 as a solar light photoredox catalyst for dehalogenation of alpha-haloacetophenones

    Full text link
    [EN] Subphthalocyanine has been incorporated into a robust metal-organic framework having amino groups as binding sites. The resulting SubPc@MIL-101(Cr)-NH2 composite has a loading of 2 wt%. Adsorption of subphthalocyanine does not deteriorate host crystallinity, but decreases the surface area and porosity of MIL-101(Cr)-NH2. The resulting SubPc@MIL-101(Cr)-NH2 composite exhibits a 575 nm absorption band responsible for the observed photoredox catalytic activity under simulated sunlight irradiation for hydrogenative dehalogenation of alpha-haloacetophenones and for the coupling of alpha-bromoacetophenone and styrene. The material undergoes a slight deactivation upon reuse. In comparison to the case of phthalocyanines the present study is one of the few cases showing the use of subphthalocyanine as a photoredox catalyst, with its activity derived from site isolation within the MOF cavities.Financial support from the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and RTI2018-098237-B-C21) and Generalitat Valenciana (Prometeo 2017-083) is gratefully acknowledged. S. N. is thankful for the financial support from the Fundacion Ramon Areces (XVIII Concurso Nacional para la Adjudicacion de Ayudas a la Investigacion en Ciencias de la Vida y de la Materia, 2016), the Ministerio de Ciencia, Innovacion y Universidades RTI 2018-099482-A-I00 project and the Generalitat Valenciana grupos de investigacion consolidables 2019 (ref: AICO/2019/214) project. S. R.-B. also thanks the Research Executive Agency (REA) and the European Commission for the funding received under the Marie Sklodowska Curie actions (H2020-MSCA-IF-2015/Grant agreement number 709023/ZESMO).Santiago-Portillo, A.; Remiro-Buenamañana, S.; Navalón Oltra, S.; García Gómez, H. (2019). Subphthalocyanine encapsulated within MIL-101(Cr)-NH2 as a solar light photoredox catalyst for dehalogenation of alpha-haloacetophenones. Dalton Transactions. 48(48):17735-17740. https://doi.org/10.1039/c9dt04004hS17735177404848Deng, X., Li, Z., & García, H. (2017). Visible Light Induced Organic Transformations Using Metal-Organic-Frameworks (MOFs). Chemistry - A European Journal, 23(47), 11189-11209. doi:10.1002/chem.201701460Dhakshinamoorthy, A., Asiri, A. M., & García, H. (2016). Metal-Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production. Angewandte Chemie International Edition, 55(18), 5414-5445. doi:10.1002/anie.201505581Shen, L., Liang, R., & Wu, L. (2015). Strategies for engineering metal-organic frameworks as efficient photocatalysts. Chinese Journal of Catalysis, 36(12), 2071-2088. doi:10.1016/s1872-2067(15)60984-6Shi, Y., Yang, A.-F., Cao, C.-S., & Zhao, B. (2019). Applications of MOFs: Recent advances in photocatalytic hydrogen production from water. Coordination Chemistry Reviews, 390, 50-75. doi:10.1016/j.ccr.2019.03.012Wang, S., & Wang, X. (2015). Multifunctional Metal-Organic Frameworks for Photocatalysis. Small, 11(26), 3097-3112. doi:10.1002/smll.201500084Wen, M., Mori, K., Kuwahara, Y., An, T., & Yamashita, H. (2018). Design of Single-Site Photocatalysts by Using Metal-Organic Frameworks as a Matrix. Chemistry - An Asian Journal, 13(14), 1767-1779. doi:10.1002/asia.201800444Das, S., & Wan Daud, W. M. A. (2014). RETRACTED: Photocatalytic CO2 transformation into fuel: A review on advances in photocatalyst and photoreactor. Renewable and Sustainable Energy Reviews, 39, 765-805. doi:10.1016/j.rser.2014.07.046Claessens, C. G., González-Rodríguez, D., & Torres, T. (2002). Subphthalocyanines:  Singular Nonplanar Aromatic CompoundsSynthesis, Reactivity, and Physical Properties. Chemical Reviews, 102(3), 835-854. doi:10.1021/cr0101454N. Kobayashi , in The Porphyrin Handbook , ed. K. M. Kadish , K. M. Smith and R. Guilard , Academic Press , Amsterdam , 2003 , pp. 161–262Santiago-Portillo, A., Baldoví, H. G., Carbonell, E., Navalón, S., Álvaro, M., García, H., & Ferrer, B. (2018). Ruthenium(II) Tris(2,2′-bipyridyl) Complex Incorporated in UiO-67 as Photoredox Catalyst. The Journal of Physical Chemistry C, 122(51), 29190-29199. doi:10.1021/acs.jpcc.8b07204Ferey, G. (2005). A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309(5743), 2040-2042. doi:10.1126/science.1116275Santiago-Portillo, A., Blandez, J. F., Navalón, S., Álvaro, M., & García, H. (2017). Influence of the organic linker substituent on the catalytic activity of MIL-101(Cr) for the oxidative coupling of benzylamines to imines. Catalysis Science & Technology, 7(6), 1351-1362. doi:10.1039/c6cy02577cSantiago-Portillo, A., Navalón, S., Concepción, P., Álvaro, M., & García, H. (2017). Influence of Terephthalic Acid Substituents on the Catalytic Activity of MIL-101(Cr) in Three Lewis Acid Catalyzed Reactions. ChemCatChem, 9(13), 2506-2511. doi:10.1002/cctc.201700236Claessens, C. G., González-Rodríguez, D., Rodríguez-Morgade, M. S., Medina, A., & Torres, T. (2013). Subphthalocyanines, Subporphyrazines, and Subporphyrins: Singular Nonplanar Aromatic Systems. Chemical Reviews, 114(4), 2192-2277. doi:10.1021/cr400088wGuilleme, J., Martínez-Fernández, L., González-Rodríguez, D., Corral, I., Yáñez, M., & Torres, T. (2014). An Insight into the Mechanism of the Axial Ligand Exchange Reaction in Boron Subphthalocyanine Macrocycles. Journal of the American Chemical Society, 136(40), 14289-14298. doi:10.1021/ja508181bManaga, M., Mack, J., Gonzalez-Lucas, D., Remiro-Buenamañana, S., Tshangana, C., Cammidge, A. N., & Nyokong, T. (2016). Photophysical properties of tetraphenylporphyrinsubphthalocyanine conjugates. Journal of Porphyrins and Phthalocyanines, 20(01n04), 1-20. doi:10.1142/s1088424615500959Bressan, G., Cammidge, A. N., Jones, G. A., Heisler, I. A., Gonzalez-Lucas, D., Remiro-Buenamañana, S., & Meech, S. R. (2019). Electronic Energy Transfer in a Subphthalocyanine–Zn Porphyrin Dimer Studied by Linear and Nonlinear Ultrafast Spectroscopy. The Journal of Physical Chemistry A, 123(27), 5724-5733. doi:10.1021/acs.jpca.9b04398Morse, G. E., & Bender, T. P. (2012). Boron Subphthalocyanines as Organic Electronic Materials. ACS Applied Materials & Interfaces, 4(10), 5055-5068. doi:10.1021/am3015197Sampson, K. L., Jiang, X., Bukuroshi, E., Dovijarski, A., Raboui, H., Bender, T. P., & Kadish, K. M. (2018). A Comprehensive Scope of Peripheral and Axial Substituent Effect on the Spectroelectrochemistry of Boron Subphthalocyanines. The Journal of Physical Chemistry A, 122(18), 4414-4424. doi:10.1021/acs.jpca.8b02023Claessens, C. G., González-Rodríguez, D., del Rey, B., Torres, T., Mark, G., Schuchmann, H.-P., … Nohr, R. S. (2003). Highly Efficient Synthesis of Chloro- and Phenoxy-Substituted Subphthalocyanines. European Journal of Organic Chemistry, 2003(14), 2547-2551. doi:10.1002/ejoc.200300169Speckmeier, E., Fuchs, P. J. W., & Zeitler, K. (2018). A synergistic LUMO lowering strategy using Lewis acid catalysis in water to enable photoredox catalytic, functionalizing C–C cross-coupling of styrenes. Chemical Science, 9(35), 7096-7103. doi:10.1039/c8sc02106
    corecore