2 research outputs found

    Few layer 2D pnictogens (P & Sb) catalyze the alkylation of soft nucleophiles with esters

    Get PDF
    Group 15 elements in zero oxidation state (P, As, Sb and Bi), also called pnictogens, are rarely used in catalysis due to the difficulties associated in preparing well-structured and stable materials. Here, we report on the synthesis of highly exfoliated, few layer 2D phosphorene and antimonene in zero oxidation state, suspended in an ionic liquid, with the native atoms ready to interact with external reagents while avoiding aerobic or aqueous decomposition pathways, and on their use as efficient catalysts for the alkylation of nucleophiles with esters. The few layer pnictogen material circumvents the extremely harsh reaction conditions associated to previous superacid-catalyzed alkylations, by enabling an alternative mechanism on surface, protected from the water and air by the ionic liquid. These 2D catalysts allow the alkylation of a variety of acid-sensitive organic molecules and giving synthetic relevancy to the use of simple esters as alkylating agents

    Few layer 2D pnictogens catalyze the alkylation of soft nucleophiles with esters

    No full text
    Group 15 elements in zero oxidation state (P, As, Sb and Bi), also called pnictogens, are rarely used in catalysis due to the difficulties associated in preparing well–structured and stable materials. Here, we report on the synthesis of highly exfoliated, few layer 2D phosphorene and antimonene in zero oxidation state, suspended in an ionic liquid, with the native atoms ready to interact with external reagents while avoiding aerobic or aqueous decomposition pathways, and on their use as efficient catalysts for the alkylation of nucleophiles with esters. The few layer pnictogen material circumvents the extremely harsh reaction conditions associated to previous superacid–catalyzed alkylations, by enabling an alternative mechanism on surface, protected from the water and air by the ionic liquid. These 2D catalysts allow the alkylation of a variety of acid–sensitive organic molecules and giving synthetic relevancy to the use of simple esters as alkylating agents.We thank the European Research Council (ERC Starting Grant 804110 to G.A., and ERC Advanced Grant 742145 B-PhosphoChem to A.H.) for financial support. The research leading to these results was partially funded by the European Union Seventh Framework Program under grant agreement No. 604391 Graphene Flagship. G.A. has received financial support through the Postdoctoral Junior Leader Fellowship Program from “la Caixa” Banking Foundation (LCF/BQ/PI18/11630018). G.A. thanks support by the Deutsche Forschungsgemeinschaft (DFG; FLAG-ERA AB694/2-1), the Generalitat Valenciana (SEJI/2018/034 grant) and the FAU (Emerging Talents Initiative grant #WS16-17_Nat_04). Financial support by MINECO through the Excellence Unit María de Maeztu (MDM-2015-0538), Severo Ochoa (SEV-2016-0683) and RETOS (CTQ2014-55178-R) program is acknowledged. M.A.R.-C. thanks MINECO for the concession of a FPU fellowship. We also thank the DFG (DFG-SFB 953 “Synthetic Carbon Allotropes”, Project A1), the Interdisciplinary Center for Molecular Materials (ICMM), and the Graduate School Molecular Science (GSMS) for financial support. Research at UCM sponsored by Spanish MINECO/FEDER grant MAT2015-066888-C3-3-R and ERC-PoC-2016 grant POLAR-EM. H.-P.S. thanks the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program for financial support, in the context of an Advanced Investigator Grant granted to him (Grant Agreement No. 693398-ILID). B.S.J.H. and S.S. acknowledge financial support by the DFG within the Cluster of Excellence “Engineering of Advanced Materials” (project EXC 315, Bridge Funding). F.M. acknowledges R. Ransom for very helpful discussions
    corecore