1 research outputs found

    Letter. Omnidirectional absorption in nanostructured metal surfaces

    No full text
    Light absorbers available at present provide far from optimal black-body performance. The need for more efficient absorbers is particularly acute on the microscale, where they can play a significant role in preventing crosstalk between optical interconnects, and also as thermal light-emitting sources. Several efforts have been made in this context to achieve near-total but directionally dependent absorption using periodic grating structures. However, the ability to absorb light completely for any incident direction of light remains a challenge. Here we show that total omnidirectional absorption of light can be achieved in nanostructured metal surfaces that sustain localized optical excitations. The effect is realized over a full range of incident angles and can be tuned throughout the visible and near-infrared regimes by scaling the nanostructure dimensions. We suggest that surfaces displaying omnidirectional absorption will play a key role in devising efficient photovoltaic cells in which the absorbed light leads to electron–hole pair production
    corecore