3 research outputs found

    Chiral templating of self-assembling nanostructures by circularly polarized light

    Get PDF
    PMCID: PMC4387888.-- et al.The high optical and chemical activity of nanoparticles (NPs) signifies the possibility of converting the spin angular momenta of photons into structural changes in matter. Here, we demonstrate that illumination of dispersions of racemic CdTe NPs with right- (left-)handed circularly polarized light (CPL) induces the formation of right- (left-)handed twisted nanoribbons with an enantiomeric excess exceeding 30%, which is â 1/410 times higher than that of typical CPL-induced reactions. Linearly polarized light or dark conditions led instead to straight nanoribbons. CPL templating of NP assemblies is based on the enantio-selective photoactivation of chiral NPs and clusters, followed by their photooxidation and self-assembly into nanoribbons with specific helicity as a result of chirality-sensitive interactions between the NPs. The ability of NPs to retain the polarization information of incident photons should open pathways for the synthesis of chiral photonic materials and allow a better understanding of the origins of biomolecular homochirality.This material is based on work partially supported by the Center for Solar and Thermal Energy Conversion, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under award number #DE-SC0000957, and by ARO MURI W911NF-12-1-0407 ‘Coherent Effects in Hybrid Nanostructures for Lineshape Engineering of Electromagnetic Media’ (N.A.K. and S.L.). We acknowledge support from the NSF under grant ECS-0601345; CBET 0933384; CBET 0932823; and CBET 1036672. Financial support from the Robert A. Welch Foundation (C-1664) is also acknowledged (S.L.). Support from the NIH grant GM085043 (P.Z.) is gratefully acknowledged. The work of P.K. was supported by the NSF DMR grant No. 1309765 and by the ACS PRF grant No. 53062-ND6.Peer Reviewe

    Chiral templating of self-assembling nanostructures by circularly polarized light

    No full text
    The high optical and chemical activity of nanoparticles (NPs) signifies the possibility of converting the spin angular momenta of photons into structural changes in matter. Here, we demonstrate that illumination of dispersions of racemic CdTe NPs with right- (left-)handed circularly polarized light (CPL) induces the formation of right- (left-)handed twisted nanoribbons with an enantiomeric excess exceeding 30%, which is ∼10 times higher than that of typical CPL-induced reactions. Linearly polarized light or dark conditions led instead to straight nanoribbons. CPL 'templating' of NP assemblies is based on the enantio-selective photoactivation of chiral NPs and clusters, followed by their photooxidation and self-assembly into nanoribbons with specific helicity as a result of chirality-sensitive interactions between the NPs. The ability of NPs to retain the polarization information of incident photons should open pathways for the synthesis of chiral photonic materials and allow a better understanding of the origins of biomolecular homochirality
    corecore