2 research outputs found

    Optical and infrared flares from a transient Galactic soft gamma-ray repeater

    Full text link
    Soft gamma-ray repeaters (SGRs) are a rare type of gamma-ray transient sources that are ocasionally detected as bursts in the high-energy sky. They are thought to be produced by magnetars, young neutron stars with very strong magnetic fields of the order of 10^(14-15) G. Only three such objects are known in our Galaxy, and a fourth one is associated with the supernova remnant N49 in the Large Magellanic Cloud. In none of these cases has an optical counterpart to either the gamma-ray flares or the quiescent source been identified. Here we present multi-wavelength observations of a puzzling source, SWIFT J195509+261406, for which we detected more than 40 flaring episodes in the optical band over a time span of 3 days, plus a faint infrared flare 11 days later, after which it returned to quiescence. We propose that SWIFT J195509+261406 is a member of a subgroup of SGRs for which the long-term X-ray emission is transient in nature. Furthermore, it is the first SGR for which bursts have been detected in the optical and near-infrared bands and maybe the link between the "persistent" SGRs and the dim isolated neutron stars.Comment: Version submitted to Nature on 31 Jan 2008. A substantially revised version of this work has been published in Nature, vol. 455 issue 7212 pp 506-509 under the title "Flares from a Galactic magnetar suggest a missing link to dim isolated neutron stars
    corecore