3 research outputs found

    Activation of Erk1/2 and Akt following unilateral ureteral obstruction

    Get PDF
    Chronic unilateral ureteral obstruction is a well characterized model of renal injury leading to tubulointerstitial fibrosis and distinct patterns of cell proliferation and apoptosis in the obstructed kidney. In this study we assessed the contribution of the mitogen activated protein kinase (MAPK)-ERK1/2 and the phosphatidylinositol 3 kinase (PI3K)-Akt pathways to early renal changes following unilateral obstruction. Increased activation of small Ras GTPase and its downstream effectors ERK1/2 and Akt was detected in ligated kidneys. The use of specific pharmacological inhibitors to either ERK1/2 or Akt activation led to decreased levels of fibroblast-myofibroblast markers in the interstitium while inhibition of PI3K reduced the number of proliferating cells and the amount of interstitial extracellular matrix deposition. Treatment with an ERK1/2 inhibitor diminished the number of apoptotic tubule and interstitial cells. Our results suggest a role for the MAPK-ERK1/2 and PI3K-Akt systems in early changes induced by ureteral obstruction and that inhibition of these signaling pathways may provide a novel approach to prevent progression of renal fibrosis

    Activation of Erk1/2 and Akt following unilateral ureteral obstruction

    No full text
    Chronic unilateral ureteral obstruction is a well characterized model of renal injury leading to tubulointerstitial fibrosis and distinct patterns of cell proliferation and apoptosis in the obstructed kidney. In this study we assessed the contribution of the mitogen activated protein kinase (MAPK)-ERK1/2 and the phosphatidylinositol 3 kinase (PI3K)-Akt pathways to early renal changes following unilateral obstruction. Increased activation of small Ras GTPase and its downstream effectors ERK1/2 and Akt was detected in ligated kidneys. The use of specific pharmacological inhibitors to either ERK1/2 or Akt activation led to decreased levels of fibroblast-myofibroblast markers in the interstitium while inhibition of PI3K reduced the number of proliferating cells and the amount of interstitial extracellular matrix deposition. Treatment with an ERK1/2 inhibitor diminished the number of apoptotic tubule and interstitial cells. Our results suggest a role for the MAPK-ERK1/2 and PI3K-Akt systems in early changes induced by ureteral obstruction and that inhibition of these signaling pathways may provide a novel approach to prevent progression of renal fibrosis.Peer Reviewe
    corecore