2 research outputs found

    Thermal unfolding of plastocyanin from the mesophilic cyanobacterium Synechocystis sp. PCC 6803 and comparison with its thermophilic counterpart from Phormidium laminosum

    No full text
    7 pages, 5 figures.-- PMID: 16605257 [PubMed].-- Printed version published Apr 18, 2006.The thermal unfolding of plastocyanin from the mesophilic cyanobacterium Synechocystis is described herein, and the results are compared with those obtained for the homologous thermophilic protein from Phormidium laminosum. The thermal unfolding is irreversible under all the conditions that were investigated. Plastocyanin from the thermophilic organism, both in the native state and in the apoprotein form, proved to be more thermostable than its mesophilic counterpart under all experimental conditions. Synechocystis reduced plastocyanin has been shown to be more stable than the oxidized species, both with respect to the required temperature for protein unfolding and with respect to the kinetics of the process. This behavior contrasts with that observed for Phormidium plastocyanin, in which the oxidized form is the more stable one. The unfolding pH dependence and kinetic studies indicate that around physiological pH, the most kinetically stable form is also the one more resistant to temperature variations, suggesting a close compromise between function and stability. Molecular dynamics simulations suggest that Phormidium and Synechocystis plastocyanins follow different unfolding pathways that affect different protein areas and which could be responsible for the observed dissimilar thermal resistance.This work was supported in part by research grants from the Human Potential Program, European Commission (The Transient RTN, HPRNCT- 1999-00095), the Spanish Ministry of Education and Science (BMC2003-0458), and the Andalusian Government (PAI-CVI-0198). M.J.F. was the recipient of an individual Marie-Curie Fellowship (QLK1-CT-2002-51483).Peer reviewe
    corecore