3 research outputs found

    Reactive and Nonreactive Scattering of HCl from Au(111): An Ab Initio Molecular Dynamics Study

    Get PDF
    The HCl + Au(111) system has recently become a benchmark for highly activated dissociative chemisorption, which presumably is strongly affected by electron–hole pair excitation. Previous dynamics calculations, which were based on density functional theory at the generalized gradient approximation level (GGA-DFT) for the molecule–surface interaction, have all overestimated measured reaction probabilities by at least an order of magnitude. Here, we perform ab initio molecular dynamics (AIMD) and AIMD with electronic friction (AIMDEF) calculations employing a density functional that includes the attractive van der Waals interaction. Our calculations model the simultaneous and possibly synergistic effects of surface temperature, surface atom motion, electron–hole pair excitation, the molecular beam conditions of the experiments, and the van der Waals interaction on the reactivity. We find that reaction probabilities computed with AIMDEF and the SRP32-vdW functional still overestimate the measured reaction probabilities, by a factor 18 for the highest incidence energy at which measurements were performed (≈2.5 eV). Even granting that the experiment could have underestimated the sticking probability by about a factor three, this still translates into a considerable overestimation of the reactivity by the current theory. Likewise, scaled transition probabilities for vibrational excitation from ν = 1, j = 1 to ν = 2 are overestimated by the AIMDEF theory, by factors 3–8 depending on the initial conditions modeled. Energy losses to the surface and translational energy losses are, however, in good agreement with experimental values.Theoretical Chemistr

    Reactive and nonreactive scattering of HCl from Au(111): An Ab initio molecular dynamics study

    No full text
    The HCl + Au(111) system has recently become a benchmark for highly activated dissociative chemisorption, which presumably is strongly affected by electron–hole pair excitation. Previous dynamics calculations, which were based on density functional theory at the generalized gradient approximation level (GGA-DFT) for the molecule–surface interaction, have all overestimated measured reaction probabilities by at least an order of magnitude. Here, we perform ab initio molecular dynamics (AIMD) and AIMD with electronic friction (AIMDEF) calculations employing a density functional that includes the attractive van der Waals interaction. Our calculations model the simultaneous and possibly synergistic effects of surface temperature, surface atom motion, electron–hole pair excitation, the molecular beam conditions of the experiments, and the van der Waals interaction on the reactivity. We find that reaction probabilities computed with AIMDEF and the SRP32-vdW functional still overestimate the measured reaction probabilities, by a factor 18 for the highest incidence energy at which measurements were performed (≈2.5 eV). Even granting that the experiment could have underestimated the sticking probability by about a factor three, this still translates into a considerable overestimation of the reactivity by the current theory. Likewise, scaled transition probabilities for vibrational excitation from ν = 1, j = 1 to ν = 2 are overestimated by the AIMDEF theory, by factors 3–8 depending on the initial conditions modeled. Energy losses to the surface and translational energy losses are, however, in good agreement with experimental values.This work was supported financially by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO-CW) through a TOP grant and by the European Research Council through an ERC advanced grant (no. 338580), and with computer time granted by NWO-EW. B.J. acknowledges the support by National Natural Science Foundation of China (91645202, 21722306, and 21573203) and Fundamental Research Funds for the Central Universities (WK2060190082 and WK2340000078). H.G. thanks the U.S. National Science Foundation (CHE-1462109) for generous support. J.I.J. and M.A. acknowledge the Spanish Ministerio de Economia, Industria y Competitividad grant no. FIS2016-76471-P.Peer reviewe
    corecore